Nuprl Lemma : fps-compose-single

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[x:X]. ∀[b:bag(X)]. ∀[f:PowerSeries(X;r)].
    <b>(x:=f) (<(b|¬x)>*(f)^(#((b|x)))) ∈ PowerSeries(X;r) supposing f[{}] 0 ∈ |r| 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-compose: g(x:=f) fps-exp: (f)^(n) fps-mul: (f*g) fps-single: <c> fps-coeff: f[b] power-series: PowerSeries(X;r) bag-co-restrict: (b|¬x) bag-restrict: (b|x) bag-size: #(bs) empty-bag: {} bag: bag(T) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T crng: CRng rng_zero: 0 rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q crng: CRng rng: Rng fps-sub: (f-g)
Lemmas referenced :  equal_wf squash_wf true_wf fps-compose-single-general fps-mul_wf fps-single_wf bag-co-restrict_wf fps-exp_wf bag-size_wf bag-restrict_wf subtype_rel_self iff_weakening_equal valueall-type_wf power-series_wf crng_wf deq_wf rng_car_wf fps-coeff_wf empty-bag_wf rng_zero_wf bag_wf fps-one_wf fps-scalar-mul-zero fps-sub_wf fps-scalar-mul_wf neg_id_fps mon_ident_fps fps-add_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry because_Cache independent_isectElimination natural_numberEquality sqequalRule imageMemberEquality baseClosed instantiate productElimination independent_functionElimination setElimination rename isect_memberEquality axiomEquality universeEquality hyp_replacement applyLambdaEquality

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[x:X].  \mforall{}[b:bag(X)].  \mforall{}[f:PowerSeries(X;r)].
        <b>(x:=f)  =  (<(b|\mneg{}x)>*(f)\^{}(\#((b|x))))  supposing  f[\{\}]  =  0 
    supposing  valueall-type(X)



Date html generated: 2018_05_21-PM-10_10_24
Last ObjectModification: 2018_05_19-PM-04_15_20

Theory : power!series


Home Index