Nuprl Lemma : fps-compose-zero

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[x:X]. ∀[f:PowerSeries(X;r)].  (0(x:=f) 0 ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-compose: g(x:=f) fps-zero: 0 power-series: PowerSeries(X;r) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a fps-zero: 0 fps-compose: g(x:=f) power-series: PowerSeries(X;r) fps-coeff: f[b] crng: CRng rng: Rng subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] and: P ∧ Q cand: c∧ B all: x:A. B[x] implies:  Q prop: ring_p: IsRing(T;plus;zero;neg;times;one) group_p: IsGroup(T;op;id;inv)
Lemmas referenced :  bag-summation-is-zero list_wf bag_wf rng_car_wf rng_plus_wf rng_zero_wf bag-parts'_wf2 infix_ap_wf bag-product_wf rng_all_properties crng_all_properties rng_times_zero bag-member_wf crng_properties rng_properties rng_plus_comm2 power-series_wf crng_wf deq_wf valueall-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename independent_isectElimination applyEquality because_Cache productElimination independent_pairFormation lambdaFormation isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[x:X].  \mforall{}[f:PowerSeries(X;r)].    (0(x:=f)  =  0) 
    supposing  valueall-type(X)



Date html generated: 2016_05_15-PM-09_54_10
Last ObjectModification: 2015_12_27-PM-04_36_49

Theory : power!series


Home Index