Nuprl Lemma : bag-restrict-size-bound

[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T]. ∀[b:bag(T)].
  (((#((b|x)) #((b|¬x))) #(b) ∈ ℤ) ∧ (#((b|¬x)) ≤ #(b)) ∧ (#((b|x)) ≤ #(b)))


Proof




Definitions occuring in Statement :  bag-co-restrict: (b|¬x) bag-restrict: (b|x) bag-size: #(bs) bag: bag(T) deq: EqDecider(T) uall: [x:A]. B[x] le: A ≤ B and: P ∧ Q add: m int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B top: Top squash: T true: True subtype_rel: A ⊆B all: x:A. B[x] decidable: Dec(P) or: P ∨ Q nat: guard: {T} prop: ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A le: A ≤ B
Lemmas referenced :  bag-restrict-split deq_wf bag_wf nat_wf less_than'_wf int_formula_prop_wf int_term_value_add_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma itermAdd_wf intformeq_wf intformnot_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt le_wf nat_properties bag-restrict_wf bag-co-restrict_wf decidable__le bag-size_wf bag-size-append
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis applyEquality lambdaEquality imageElimination because_Cache natural_numberEquality imageMemberEquality hypothesisEquality baseClosed independent_pairFormation dependent_functionElimination unionElimination equalityTransitivity equalitySymmetry setElimination rename setEquality intEquality independent_isectElimination dependent_pairFormation int_eqEquality computeAll productElimination independent_pairEquality axiomEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].  \mforall{}[b:bag(T)].
    (((\#((b|x))  +  \#((b|\mneg{}x)))  =  \#(b))  \mwedge{}  (\#((b|\mneg{}x))  \mleq{}  \#(b))  \mwedge{}  (\#((b|x))  \mleq{}  \#(b)))



Date html generated: 2016_05_15-PM-08_10_57
Last ObjectModification: 2016_01_16-PM-01_27_59

Theory : bags_2


Home Index