Nuprl Lemma : bag-restrict-size-bound
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T]. ∀[b:bag(T)].
  (((#((b|x)) + #((b|¬x))) = #(b) ∈ ℤ) ∧ (#((b|¬x)) ≤ #(b)) ∧ (#((b|x)) ≤ #(b)))
Proof
Definitions occuring in Statement : 
bag-co-restrict: (b|¬x), 
bag-restrict: (b|x), 
bag-size: #(bs), 
bag: bag(T), 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
le: A ≤ B, 
and: P ∧ Q, 
add: n + m, 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
and: P ∧ Q, 
cand: A c∧ B, 
top: Top, 
squash: ↓T, 
true: True, 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
nat: ℕ, 
guard: {T}, 
prop: ℙ, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
le: A ≤ B
Lemmas referenced : 
bag-restrict-split, 
deq_wf, 
bag_wf, 
nat_wf, 
less_than'_wf, 
int_formula_prop_wf, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
itermAdd_wf, 
intformeq_wf, 
intformnot_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
le_wf, 
nat_properties, 
bag-restrict_wf, 
bag-co-restrict_wf, 
decidable__le, 
bag-size_wf, 
bag-size-append
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
imageElimination, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
independent_pairFormation, 
dependent_functionElimination, 
unionElimination, 
equalityTransitivity, 
equalitySymmetry, 
setElimination, 
rename, 
setEquality, 
intEquality, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
computeAll, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].  \mforall{}[b:bag(T)].
    (((\#((b|x))  +  \#((b|\mneg{}x)))  =  \#(b))  \mwedge{}  (\#((b|\mneg{}x))  \mleq{}  \#(b))  \mwedge{}  (\#((b|x))  \mleq{}  \#(b)))
Date html generated:
2016_05_15-PM-08_10_57
Last ObjectModification:
2016_01_16-PM-01_27_59
Theory : bags_2
Home
Index