Nuprl Lemma : fps-set-to-one-ucont

[r:CRng]. ∀y:Atom. ∀n:ℕ.  fps-ucont(Atom;AtomDeq;r;f.[f]_n(y:=1))


Proof




Definitions occuring in Statement :  fps-set-to-one: [f]_n(y:=1) fps-ucont: fps-ucont(X;eq;r;f.G[f]) atom-deq: AtomDeq nat: uall: [x:A]. B[x] all: x:A. B[x] atom: Atom crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] fps-ucont: fps-ucont(X;eq;r;f.G[f]) exists: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a fps-restrict: fps-restrict(eq;r;f;d) fps-set-to-one: [f]_n(y:=1) fps-coeff: f[b] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q nat: bor: p ∨bq ifthenelse: if then else fi  crng: CRng rng: Rng bfalse: ff prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top iff: ⇐⇒ Q rev_implies:  Q sub-bag: sub-bag(T;as;bs) so_lambda: λ2x.t[x] so_apply: x[s] squash: T true: True le: A ≤ B subtract: m
Lemmas referenced :  bag-append_wf bag-rep_wf list-subtype-bag subtype_rel_self lt_int_wf bag-count_wf atom-deq_wf bool_wf eqtt_to_assert assert_of_lt_int nat_wf rng_zero_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf bag-size_wf deq-sub-bag_wf subtract_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf assert-deq-sub-bag sub-bag_wf bag_wf power-series_wf all_wf rng_car_wf fps-coeff_wf fps-set-to-one_wf fps-restrict_wf crng_wf bag-append-assoc squash_wf true_wf bag-rep-add add-associates minus-one-mul add-commutes minus-one-mul-top add-mul-special zero-mul add-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation dependent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin atomEquality hypothesisEquality hypothesis applyEquality because_Cache independent_isectElimination sqequalRule natural_numberEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination lambdaEquality setElimination rename promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination dependent_set_memberEquality int_eqEquality intEquality isect_memberEquality voidEquality independent_pairFormation computeAll imageElimination universeEquality imageMemberEquality baseClosed minusEquality

Latex:
\mforall{}[r:CRng].  \mforall{}y:Atom.  \mforall{}n:\mBbbN{}.    fps-ucont(Atom;AtomDeq;r;f.[f]\_n(y:=1))



Date html generated: 2018_05_21-PM-10_12_40
Last ObjectModification: 2017_07_26-PM-06_35_03

Theory : power!series


Home Index