Nuprl Lemma : fps-slice-ucont

[X:Type]. ∀[eq:EqDecider(X)]. ∀[r:CRng].  ∀n:ℕfps-ucont(X;eq;r;f.[f]_n)


Proof




Definitions occuring in Statement :  fps-ucont: fps-ucont(X;eq;r;f.G[f]) fps-slice: [f]_n deq: EqDecider(T) nat: uall: [x:A]. B[x] all: x:A. B[x] universe: Type crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] fps-ucont: fps-ucont(X;eq;r;f.G[f]) exists: x:A. B[x] member: t ∈ T fps-restrict: fps-restrict(eq;r;f;d) fps-slice: [f]_n fps-coeff: f[b] subtype_rel: A ⊆B nat: implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  iff: ⇐⇒ Q power-series: PowerSeries(X;r) bfalse: ff prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A rev_implies:  Q crng: CRng rng: Rng so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  eq_int_wf bag-size_wf bool_wf eqtt_to_assert assert_of_eq_int nat_wf deq-sub-bag_wf assert-deq-sub-bag eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot sub-bag_wf sub-bag_weakening neg_assert_of_eq_int rng_zero_wf power-series_wf all_wf rng_car_wf fps-coeff_wf fps-slice_wf fps-restrict_wf bag_wf crng_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation dependent_pairFormation hypothesisEquality cut sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesis applyEquality because_Cache setElimination rename unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination lambdaEquality dependent_functionElimination independent_functionElimination promote_hyp instantiate voidElimination universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].    \mforall{}n:\mBbbN{}.  fps-ucont(X;eq;r;f.[f]\_n)



Date html generated: 2018_05_21-PM-10_11_30
Last ObjectModification: 2017_07_26-PM-06_34_43

Theory : power!series


Home Index