Nuprl Lemma : fps-pascal-slice

[r:CRng]. ∀[x,y:Atom]. ∀[n:ℕ].  ([Δ(x,y)]_n ((<{x}>+<{y}>))^(n) ∈ PowerSeries(r))


Proof




Definitions occuring in Statement :  fps-pascal: Δ(x,y) fps-exp: (f)^(n) fps-slice: [f]_n fps-add: (f+g) fps-single: <c> power-series: PowerSeries(X;r) single-bag: {x} atom-deq: AtomDeq nat: uall: [x:A]. B[x] atom: Atom equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] prop: nat: crng: CRng rng: Rng fps-pascal: Δ(x,y) true: True squash: T subtype_rel: A ⊆B implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False eq_int: (i =z j) bag-size: #(bs) length: ||as|| list_ind: list_ind single-bag: {x} cons: [a b] nil: [] iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  fps-geometric-slice1 atom-valueall-type atom-deq_wf fps-add_wf fps-single_wf single-bag_wf equal_wf power-series_wf fps-slice_wf fps-div_wf rng_one_wf fps-one_wf fps-sub_wf fps-exp_wf nat_wf crng_wf eq_int_wf bag-size_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int fps-zero_wf ite_rw_true iff_weakening_equal squash_wf true_wf fps-add-slice fps-single-slice
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache independent_isectElimination hypothesis hypothesisEquality atomEquality dependent_functionElimination equalitySymmetry hyp_replacement applyLambdaEquality setElimination rename sqequalRule isect_memberEquality axiomEquality natural_numberEquality applyEquality lambdaEquality imageElimination lambdaFormation unionElimination equalityElimination productElimination equalityTransitivity dependent_pairFormation promote_hyp instantiate cumulativity independent_functionElimination voidElimination imageMemberEquality baseClosed universeEquality

Latex:
\mforall{}[r:CRng].  \mforall{}[x,y:Atom].  \mforall{}[n:\mBbbN{}].    ([\mDelta{}(x,y)]\_n  =  ((<\{x\}>+<\{y\}>))\^{}(n))



Date html generated: 2018_05_21-PM-10_11_53
Last ObjectModification: 2017_07_26-PM-06_34_49

Theory : power!series


Home Index