Nuprl Lemma : fps-geometric-slice1

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[m:ℕ]. ∀[g:PowerSeries(X;r)].  ([(1÷(1-[g]_1))]_m ([g]_1)^(m) ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-exp: (f)^(n) fps-slice: [f]_n fps-div: (f÷g) fps-sub: (f-g) fps-one: 1 power-series: PowerSeries(X;r) deq: EqDecider(T) nat: valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] natural_number: $n universe: Type equal: t ∈ T crng: CRng rng_one: 1
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q prop: nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False nequal: a ≠ b ∈  ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  fps-geometric-slice less_than_wf power-series_wf nat_wf crng_wf deq_wf valueall-type_wf fps-slice_wf fps-exp_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int nat_properties satisfiable-full-omega-tt intformnot_wf intformeq_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_constant_lemma int_formula_prop_wf squash_wf true_wf rem-one div-one iff_weakening_equal fps-slice-slice
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation imageMemberEquality baseClosed cumulativity isect_memberEquality axiomEquality because_Cache universeEquality setElimination rename lambdaFormation unionElimination equalityElimination productElimination dependent_pairFormation equalityTransitivity equalitySymmetry promote_hyp dependent_functionElimination instantiate independent_functionElimination voidElimination lambdaEquality intEquality voidEquality computeAll applyEquality imageElimination

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[m:\mBbbN{}].  \mforall{}[g:PowerSeries(X;r)].    ([(1\mdiv{}(1-[g]\_1))]\_m  =  ([g]\_1)\^{}(m)) 
    supposing  valueall-type(X)



Date html generated: 2018_05_21-PM-09_59_03
Last ObjectModification: 2017_07_26-PM-06_33_40

Theory : power!series


Home Index