Nuprl Lemma : fps-geometric-slice
∀[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[m:ℕ]. ∀[n:ℕ+]. ∀[g:PowerSeries(X;r)].
    [(1÷(1-g))]_m = if (m rem n =z 0) then (g)^(m ÷ n) else 0 fi  ∈ PowerSeries(X;r) 
    supposing g = [g]_n ∈ PowerSeries(X;r) 
  supposing valueall-type(X)
This theorem is one of freek's list of 100 theorems
Proof
Definitions occuring in Statement : 
fps-exp: (f)^(n)
, 
fps-slice: [f]_n
, 
fps-div: (f÷g)
, 
fps-sub: (f-g)
, 
fps-one: 1
, 
fps-zero: 0
, 
power-series: PowerSeries(X;r)
, 
deq: EqDecider(T)
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
valueall-type: valueall-type(T)
, 
ifthenelse: if b then t else f fi 
, 
eq_int: (i =z j)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
remainder: n rem m
, 
divide: n ÷ m
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
, 
crng: CRng
, 
rng_one: 1
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
guard: {T}
, 
nat_plus: ℕ+
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
less_than: a < b
, 
squash: ↓T
, 
nequal: a ≠ b ∈ T 
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
int_upper: {i...}
, 
label: ...$L... t
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
equal_wf, 
power-series_wf, 
fps-slice_wf, 
nat_plus_wf, 
int_seg_wf, 
int_seg_properties, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
decidable__equal_int, 
int_seg_subtype, 
false_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
le_wf, 
decidable__lt, 
lelt_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
nat_wf, 
crng_wf, 
deq_wf, 
valueall-type_wf, 
fps-geometric-slice_lemma2, 
squash_wf, 
true_wf, 
eq_int_wf, 
nat_plus_properties, 
equal-wf-base, 
int_subtype_base, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
fps-exp_wf, 
divide_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
fps-zero_wf, 
iff_weakening_equal, 
rem_base_case, 
div_base_case, 
fps-one_wf, 
fps-exp-zero, 
int_upper_subtype_nat, 
nequal-le-implies, 
zero-add, 
fps-geometric-slice_lemma, 
fps-mul_wf, 
add-is-int-iff, 
div_bounds_1, 
ifthenelse_wf, 
div_rec_case, 
fps-exp-unroll, 
add-subtract-cancel, 
rem_rec_case, 
mul_zero_fps
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomEquality, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
productElimination, 
unionElimination, 
applyEquality, 
applyLambdaEquality, 
hypothesis_subsumption, 
dependent_set_memberEquality, 
addEquality, 
universeEquality, 
imageElimination, 
remainderEquality, 
baseClosed, 
equalityElimination, 
promote_hyp, 
instantiate, 
imageMemberEquality, 
hyp_replacement, 
pointwiseFunctionality, 
baseApply, 
closedConclusion
Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[m:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[g:PowerSeries(X;r)].
        [(1\mdiv{}(1-g))]\_m  =  if  (m  rem  n  =\msubz{}  0)  then  (g)\^{}(m  \mdiv{}  n)  else  0  fi    supposing  g  =  [g]\_n 
    supposing  valueall-type(X)
Date html generated:
2018_05_21-PM-09_58_59
Last ObjectModification:
2017_07_26-PM-06_33_39
Theory : power!series
Home
Index