Nuprl Lemma : div_base_case

[a:ℕ]. ∀[n:ℕ+].  (a ÷ n) 0 ∈ ℤ supposing a < n


Proof




Definitions occuring in Statement :  nat_plus: + nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] divide: n ÷ m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a squash: T prop: subtype_rel: A ⊆B true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q nat: nat_plus: +
Lemmas referenced :  equal_wf squash_wf true_wf quotient-is-zero nat_plus_subtype_nat subtype_rel_self iff_weakening_equal less_than_wf nat_plus_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality intEquality sqequalRule independent_isectElimination natural_numberEquality imageMemberEquality baseClosed instantiate because_Cache productElimination independent_functionElimination Error :universeIsType,  setElimination rename isect_memberEquality axiomEquality

Latex:
\mforall{}[a:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    (a  \mdiv{}  n)  =  0  supposing  a  <  n



Date html generated: 2019_06_20-PM-01_14_44
Last ObjectModification: 2018_09_26-PM-02_35_51

Theory : int_2


Home Index