Nuprl Lemma : div_base_case
∀[a:ℕ]. ∀[n:ℕ+].  (a ÷ n) = 0 ∈ ℤ supposing a < n
Proof
Definitions occuring in Statement : 
nat_plus: ℕ+
, 
nat: ℕ
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
divide: n ÷ m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
squash: ↓T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
nat_plus: ℕ+
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
quotient-is-zero, 
nat_plus_subtype_nat, 
subtype_rel_self, 
iff_weakening_equal, 
less_than_wf, 
nat_plus_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeEquality, 
intEquality, 
sqequalRule, 
independent_isectElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
because_Cache, 
productElimination, 
independent_functionElimination, 
Error :universeIsType, 
setElimination, 
rename, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[a:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    (a  \mdiv{}  n)  =  0  supposing  a  <  n
Date html generated:
2019_06_20-PM-01_14_44
Last ObjectModification:
2018_09_26-PM-02_35_51
Theory : int_2
Home
Index