Nuprl Lemma : div_rec_case

[a:ℕ]. ∀[n:ℕ+].  (a ÷ n) (((a n) ÷ n) 1) ∈ ℤ supposing a ≥ 


Proof




Definitions occuring in Statement :  nat_plus: + nat: uimplies: supposing a uall: [x:A]. B[x] ge: i ≥  divide: n ÷ m subtract: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  prop: ge: i ≥  nat_plus: + nat: uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False implies:  Q not: ¬A top: Top subtype_rel: A ⊆B div_nrel: Div(a;n;q) lelt: i ≤ j < k
Lemmas referenced :  nat_wf nat_plus_wf ge_wf div_elim subtract_wf nat_plus_properties nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_wf le_wf equal-wf-base-T int_subtype_base equal-wf-T-base div_unique itermAdd_wf int_term_value_add_lemma add_cancel_in_le full-omega-unsat itermMultiply_wf itermMinus_wf istype-int istype-void int_term_value_mul_lemma int_term_value_minus_lemma add_cancel_in_lt decidable__lt intformless_wf int_formula_prop_less_lemma
Rules used in proof :  equalitySymmetry equalityTransitivity because_Cache axiomEquality isect_memberEquality sqequalRule hypothesisEquality rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid Error :universeIsType,  hypothesis cut introduction Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution dependent_functionElimination dependent_set_memberEquality productElimination natural_numberEquality unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality voidElimination voidEquality independent_pairFormation computeAll addEquality applyEquality baseClosed closedConclusion baseApply applyLambdaEquality hyp_replacement multiplyEquality minusEquality approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  Error :isect_memberEquality_alt

Latex:
\mforall{}[a:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    (a  \mdiv{}  n)  =  (((a  -  n)  \mdiv{}  n)  +  1)  supposing  a  \mgeq{}  n 



Date html generated: 2019_06_20-PM-01_14_48
Last ObjectModification: 2019_01_15-PM-02_51_35

Theory : int_2


Home Index