Nuprl Lemma : div_unique
∀[a:ℕ]. ∀[n:ℕ+]. ∀[p,q:ℕ].  (p = q ∈ ℤ) supposing (Div(a;n;q) and Div(a;n;p))
Proof
Definitions occuring in Statement : 
div_nrel: Div(a;n;q)
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
top: Top
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
ge: i ≥ j 
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
and: P ∧ Q
, 
lelt: i ≤ j < k
, 
div_nrel: Div(a;n;q)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
Lemmas referenced : 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
itermConstant_wf, 
itermAdd_wf, 
intformless_wf, 
itermVar_wf, 
intformeq_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__equal_int, 
nat_plus_properties, 
nat_properties, 
mul_cancel_in_lt, 
lt_transitivity_2, 
div_nrel_wf, 
nat_wf, 
nat_plus_wf
Rules used in proof : 
independent_pairFormation, 
voidElimination, 
isect_memberEquality_alt, 
int_eqEquality, 
lambdaEquality_alt, 
dependent_pairFormation_alt, 
independent_functionElimination, 
approximateComputation, 
unionElimination, 
dependent_functionElimination, 
independent_isectElimination, 
natural_numberEquality, 
addEquality, 
rename, 
setElimination, 
multiplyEquality, 
productElimination, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
hypothesis, 
universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
inhabitedIsType
Latex:
\mforall{}[a:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[p,q:\mBbbN{}].    (p  =  q)  supposing  (Div(a;n;q)  and  Div(a;n;p))
Date html generated:
2019_10_15-AM-10_21_17
Last ObjectModification:
2019_09_21-AM-11_47_28
Theory : int_2
Home
Index