Nuprl Lemma : mul_zero_fps

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[a:PowerSeries(X;r)].
    (((0*a) 0 ∈ PowerSeries(X;r)) ∧ ((a*0) 0 ∈ PowerSeries(X;r))) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-mul: (f*g) fps-zero: 0 power-series: PowerSeries(X;r) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B fps-rng: fps-rng(r) rng_car: |r| pi1: fst(t) rng_times: * pi2: snd(t) rng_zero: 0 infix_ap: y and: P ∧ Q
Lemmas referenced :  rng_times_zero fps-rng_wf crng_subtype_rng crng_wf deq_wf valueall-type_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis applyEquality sqequalRule isect_memberEquality_alt productElimination independent_pairEquality axiomEquality isectIsTypeImplies inhabitedIsType universeIsType instantiate universeEquality

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[a:PowerSeries(X;r)].    (((0*a)  =  0)  \mwedge{}  ((a*0)  =  0)) 
    supposing  valueall-type(X)



Date html generated: 2020_05_20-AM-09_05_32
Last ObjectModification: 2020_01_27-AM-09_31_04

Theory : power!series


Home Index