Nuprl Lemma : fps-geometric-slice_lemma2
∀[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[n:ℕ+]. ∀[m:ℕn]. ∀[g:PowerSeries(X;r)].
    [(1÷(1-g))]_m = if (m =z 0) then 1 else 0 fi  ∈ PowerSeries(X;r) supposing g = [g]_n ∈ PowerSeries(X;r) 
  supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-slice: [f]_n
, 
fps-div: (f÷g)
, 
fps-sub: (f-g)
, 
fps-one: 1
, 
fps-zero: 0
, 
power-series: PowerSeries(X;r)
, 
deq: EqDecider(T)
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
valueall-type: valueall-type(T)
, 
ifthenelse: if b then t else f fi 
, 
eq_int: (i =z j)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
, 
crng: CRng
, 
rng_one: 1
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
crng: CRng
, 
rng: Rng
, 
fps-rng: fps-rng(r)
, 
rng_car: |r|
, 
pi1: fst(t)
, 
rng_plus: +r
, 
pi2: snd(t)
, 
rng_zero: 0
, 
rng_minus: -r
, 
rng_times: *
, 
rng_one: 1
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
empty-bag: {}
, 
fps-one: 1
, 
fps-sub: (f-g)
, 
fps-coeff: f[b]
, 
fps-neg: -(f)
, 
bag-null: bag-null(bs)
, 
fps-add: (f+g)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
fps-slice: [f]_n
, 
all: ∀x:A. B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
uiff: uiff(P;Q)
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
bfalse: ff
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
infix_ap: x f y
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
eq_int: (i =z j)
, 
upto: upto(n)
, 
fps-summation: fps-summation(r;b;x.f[x])
, 
from-upto: [n, m)
, 
lt_int: i <z j
, 
single-bag: {x}
, 
cand: A c∧ B
, 
ring_p: IsRing(T;plus;zero;neg;times;one)
, 
group_p: IsGroup(T;op;id;inv)
, 
comm: Comm(T;op)
, 
subtract: n - m
, 
nequal: a ≠ b ∈ T 
, 
bag-filter: [x∈b|p[x]]
, 
rev_uimplies: rev_uimplies(P;Q)
, 
decidable: Dec(P)
Lemmas referenced : 
fps-rng_wf, 
crng_properties, 
rng_properties, 
fps-mul-slice, 
int_seg_subtype_nat, 
false_wf, 
fps-sub_wf, 
fps-one_wf, 
fps-div_wf, 
rng_one_wf, 
fps-div-property, 
null_nil_lemma, 
equal_wf, 
squash_wf, 
true_wf, 
rng_car_wf, 
fps-coeff_wf, 
bag_wf, 
power-series_wf, 
crng_wf, 
empty-bag_wf, 
fps-slice_wf, 
subtype_rel_self, 
iff_weakening_equal, 
bag_size_empty_lemma, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
int_seg_properties, 
nat_plus_properties, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
rng_zero_wf, 
rng_times_wf, 
rng_plus_wf, 
rng_minus_wf, 
fps-summation_wf, 
fps-mul_wf, 
subtract_wf, 
upto_wf, 
list-subtype-bag, 
int_seg_wf, 
fps-one-slice, 
nat_plus_wf, 
deq_wf, 
valueall-type_wf, 
assert_wf, 
bnot_wf, 
not_wf, 
equal-wf-T-base, 
rng_times_over_plus, 
rng_times_over_minus, 
rng_times_zero, 
rng_times_one, 
rng_minus_zero, 
rng_plus_zero, 
bool_cases, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
int_subtype_base, 
bag-summation-single, 
fps-add_wf, 
fps-zero_wf, 
fps-add-comm, 
btrue_wf, 
intformnot_wf, 
int_formula_prop_not_lemma, 
fps-sub-slice, 
fps-slice-slice, 
neg_id_fps, 
mon_ident_fps, 
mul_one_fps, 
bag-summation-filter, 
bag-summation-equal, 
ifthenelse_wf, 
bag-member_wf, 
bag-member-from-upto, 
itermAdd_wf, 
int_term_value_add_lemma, 
fps-neg_wf, 
mul_zero_fps, 
lt_int_wf, 
assert_of_lt_int, 
filter_cons_lemma, 
less_than_wf, 
filter_nil_lemma, 
filter_is_nil, 
le_wf, 
from-upto_wf, 
l_all_iff, 
l_member_wf, 
equal-wf-base, 
set_wf, 
decidable__equal_int, 
itermSubtract_wf, 
int_term_value_subtract_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
because_Cache, 
applyEquality, 
natural_numberEquality, 
independent_pairFormation, 
lambdaFormation, 
lambdaEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
instantiate, 
productElimination, 
independent_functionElimination, 
unionElimination, 
equalityElimination, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
promote_hyp, 
cumulativity, 
hyp_replacement, 
addEquality, 
axiomEquality, 
universeEquality, 
impliesFunctionality, 
callbyvalueReduce, 
sqleReflexivity, 
functionEquality, 
setEquality, 
productEquality
Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[m:\mBbbN{}n].  \mforall{}[g:PowerSeries(X;r)].
        [(1\mdiv{}(1-g))]\_m  =  if  (m  =\msubz{}  0)  then  1  else  0  fi    supposing  g  =  [g]\_n 
    supposing  valueall-type(X)
Date html generated:
2018_05_21-PM-09_58_25
Last ObjectModification:
2018_05_19-PM-04_14_46
Theory : power!series
Home
Index