Nuprl Lemma : fps-geometric-slice_lemma2

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[n:ℕ+]. ∀[m:ℕn]. ∀[g:PowerSeries(X;r)].
    [(1÷(1-g))]_m if (m =z 0) then else fi  ∈ PowerSeries(X;r) supposing [g]_n ∈ PowerSeries(X;r) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-slice: [f]_n fps-div: (f÷g) fps-sub: (f-g) fps-one: 1 fps-zero: 0 power-series: PowerSeries(X;r) deq: EqDecider(T) int_seg: {i..j-} nat_plus: + valueall-type: valueall-type(T) ifthenelse: if then else fi  eq_int: (i =z j) uimplies: supposing a uall: [x:A]. B[x] natural_number: $n universe: Type equal: t ∈ T crng: CRng rng_one: 1
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a crng: CRng rng: Rng fps-rng: fps-rng(r) rng_car: |r| pi1: fst(t) rng_plus: +r pi2: snd(t) rng_zero: 0 rng_minus: -r rng_times: * rng_one: 1 subtype_rel: A ⊆B nat_plus: + le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: empty-bag: {} fps-one: 1 fps-sub: (f-g) fps-coeff: f[b] fps-neg: -(f) bag-null: bag-null(bs) fps-add: (f+g) ifthenelse: if then else fi  btrue: tt squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q fps-slice: [f]_n all: x:A. B[x] bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) int_seg: {i..j-} lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top bfalse: ff or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b infix_ap: y so_lambda: λ2x.t[x] so_apply: x[s] eq_int: (i =z j) upto: upto(n) fps-summation: fps-summation(r;b;x.f[x]) from-upto: [n, m) lt_int: i <j single-bag: {x} cand: c∧ B ring_p: IsRing(T;plus;zero;neg;times;one) group_p: IsGroup(T;op;id;inv) comm: Comm(T;op) subtract: m nequal: a ≠ b ∈  bag-filter: [x∈b|p[x]] rev_uimplies: rev_uimplies(P;Q) decidable: Dec(P)
Lemmas referenced :  fps-rng_wf crng_properties rng_properties fps-mul-slice int_seg_subtype_nat false_wf fps-sub_wf fps-one_wf fps-div_wf rng_one_wf fps-div-property null_nil_lemma equal_wf squash_wf true_wf rng_car_wf fps-coeff_wf bag_wf power-series_wf crng_wf empty-bag_wf fps-slice_wf subtype_rel_self iff_weakening_equal bag_size_empty_lemma eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int int_seg_properties nat_plus_properties full-omega-unsat intformand_wf intformeq_wf itermConstant_wf itermVar_wf intformless_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_le_lemma int_formula_prop_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int rng_zero_wf rng_times_wf rng_plus_wf rng_minus_wf fps-summation_wf fps-mul_wf subtract_wf upto_wf list-subtype-bag int_seg_wf fps-one-slice nat_plus_wf deq_wf valueall-type_wf assert_wf bnot_wf not_wf equal-wf-T-base rng_times_over_plus rng_times_over_minus rng_times_zero rng_times_one rng_minus_zero rng_plus_zero bool_cases iff_transitivity iff_weakening_uiff assert_of_bnot int_subtype_base bag-summation-single fps-add_wf fps-zero_wf fps-add-comm btrue_wf intformnot_wf int_formula_prop_not_lemma fps-sub-slice fps-slice-slice neg_id_fps mon_ident_fps mul_one_fps bag-summation-filter bag-summation-equal ifthenelse_wf bag-member_wf bag-member-from-upto itermAdd_wf int_term_value_add_lemma fps-neg_wf mul_zero_fps lt_int_wf assert_of_lt_int filter_cons_lemma less_than_wf filter_nil_lemma filter_is_nil le_wf from-upto_wf l_all_iff l_member_wf equal-wf-base set_wf decidable__equal_int itermSubtract_wf int_term_value_subtract_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis equalityTransitivity equalitySymmetry applyLambdaEquality setElimination rename sqequalRule because_Cache applyEquality natural_numberEquality independent_pairFormation lambdaFormation lambdaEquality imageElimination imageMemberEquality baseClosed instantiate productElimination independent_functionElimination unionElimination equalityElimination approximateComputation dependent_pairFormation int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality promote_hyp cumulativity hyp_replacement addEquality axiomEquality universeEquality impliesFunctionality callbyvalueReduce sqleReflexivity functionEquality setEquality productEquality

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[m:\mBbbN{}n].  \mforall{}[g:PowerSeries(X;r)].
        [(1\mdiv{}(1-g))]\_m  =  if  (m  =\msubz{}  0)  then  1  else  0  fi    supposing  g  =  [g]\_n 
    supposing  valueall-type(X)



Date html generated: 2018_05_21-PM-09_58_25
Last ObjectModification: 2018_05_19-PM-04_14_46

Theory : power!series


Home Index