Nuprl Lemma : fps-slice-slice

[X:Type]. ∀[r:CRng]. ∀[m,n:ℤ]. ∀[f:PowerSeries(X;r)].
  ([[f]_m]_n if (n =z m) then [f]_m else fi  ∈ PowerSeries(X;r))


Proof




Definitions occuring in Statement :  fps-slice: [f]_n fps-zero: 0 power-series: PowerSeries(X;r) ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] int: universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  fps-slice: [f]_n fps-coeff: f[b] subtype_rel: A ⊆B nat: power-series: PowerSeries(X;r) bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False crng: CRng rng: Rng nequal: a ≠ b ∈  satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A top: Top fps-zero: 0
Lemmas referenced :  fps-ext fps-slice_wf ifthenelse_wf eq_int_wf power-series_wf fps-zero_wf bool_wf eqtt_to_assert assert_of_eq_int bag-size_wf nat_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int rng_zero_wf satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality cumulativity hypothesis productElimination independent_isectElimination lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry sqequalRule applyEquality because_Cache lambdaEquality setElimination rename dependent_pairFormation promote_hyp dependent_functionElimination instantiate independent_functionElimination voidElimination natural_numberEquality int_eqEquality intEquality isect_memberEquality voidEquality independent_pairFormation computeAll axiomEquality

Latex:
\mforall{}[X:Type].  \mforall{}[r:CRng].  \mforall{}[m,n:\mBbbZ{}].  \mforall{}[f:PowerSeries(X;r)].
    ([[f]\_m]\_n  =  if  (n  =\msubz{}  m)  then  [f]\_m  else  0  fi  )



Date html generated: 2018_05_21-PM-09_55_55
Last ObjectModification: 2017_07_26-PM-06_32_49

Theory : power!series


Home Index