Nuprl Lemma : fps-mul-slice
∀[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[n:ℕ]. ∀[f,g:PowerSeries(X;r)].
    ([(f*g)]_n = fps-summation(r;upto(n + 1);k.([f]_k*[g]_n - k)) ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-slice: [f]_n, 
fps-summation: fps-summation(r;b;x.f[x]), 
fps-mul: (f*g), 
power-series: PowerSeries(X;r), 
upto: upto(n), 
deq: EqDecider(T), 
nat: ℕ, 
valueall-type: valueall-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
subtract: n - m, 
add: n + m, 
natural_number: $n, 
universe: Type, 
equal: s = t ∈ T, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
and: P ∧ Q, 
cand: A c∧ B, 
crng: CRng, 
power-series: PowerSeries(X;r), 
nat: ℕ, 
subtype_rel: A ⊆r B, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
fps-coeff: f[b], 
squash: ↓T, 
rng: Rng, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
fps-slice: [f]_n, 
fps-mul: (f*g), 
infix_ap: x f y, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
ring_p: IsRing(T;plus;zero;neg;times;one), 
group_p: IsGroup(T;op;id;inv), 
top: Top, 
pi1: fst(t), 
pi2: snd(t), 
band: p ∧b q, 
int_seg: {i..j-}, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
sq_exists: ∃x:A [B[x]], 
lelt: i ≤ j < k, 
ge: i ≥ j , 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
bag-member: x ↓∈ bs, 
l_member: (x ∈ l), 
bag-no-repeats: bag-no-repeats(T;bs), 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
rng_all_properties, 
rng_plus_comm2, 
upto_wf, 
list-subtype-bag, 
int_seg_wf, 
nat_wf, 
int_seg_subtype_nat, 
false_wf, 
equal_wf, 
squash_wf, 
true_wf, 
rng_car_wf, 
fps-coeff_wf, 
fps-slice_wf, 
fps-mul_wf, 
fps-summation-coeff, 
subtract_wf, 
iff_weakening_equal, 
bag_wf, 
power-series_wf, 
crng_wf, 
deq_wf, 
valueall-type_wf, 
crng_properties, 
rng_properties, 
eq_int_wf, 
bag-size_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
bag-summation_wf, 
assoc_wf, 
comm_wf, 
rng_plus_wf, 
rng_zero_wf, 
bag-summation-filter, 
bag-partitions_wf, 
band_wf, 
pi1_wf_top, 
pi2_wf, 
rng_times_wf, 
infix_ap_wf, 
bag-summation-equal, 
iff_transitivity, 
assert_wf, 
iff_weakening_uiff, 
assert_of_band, 
rng_times_zero, 
bag-member_wf, 
bag-summation-partition, 
decidable__int_equal, 
bag-subtype, 
set_wf, 
member_wf, 
subtype_rel_bag, 
bag-member-partitions, 
bag-size-append, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformnot_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
itermAdd_wf, 
intformeq_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
lelt_wf, 
subtype_rel_list, 
equal-wf-base-T, 
list_subtype_base, 
int_subtype_base, 
l_member_wf, 
member_upto, 
int_seg_properties, 
le_wf, 
decidable__equal_int, 
less_than_wf, 
length_wf, 
select_wf, 
add-is-int-iff, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
no_repeats_upto, 
no_repeats_wf, 
equal-wf-T-base, 
bag-summation-is-zero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_pairFormation, 
because_Cache, 
functionExtensionality, 
addEquality, 
natural_numberEquality, 
applyEquality, 
independent_isectElimination, 
sqequalRule, 
lambdaFormation, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
cumulativity, 
dependent_functionElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_functionElimination, 
isect_memberEquality, 
axiomEquality, 
unionElimination, 
equalityElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
voidElimination, 
productEquality, 
functionEquality, 
independent_pairEquality, 
voidEquality, 
intEquality, 
hyp_replacement, 
setEquality, 
dependent_set_memberEquality, 
dependent_set_memberFormation, 
applyLambdaEquality, 
int_eqEquality, 
computeAll, 
comment, 
pointwiseFunctionality, 
baseApply, 
closedConclusion
Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}].  \mforall{}[f,g:PowerSeries(X;r)].
        ([(f*g)]\_n  =  fps-summation(r;upto(n  +  1);k.([f]\_k*[g]\_n  -  k))) 
    supposing  valueall-type(X)
Date html generated:
2018_05_21-PM-09_56_21
Last ObjectModification:
2017_07_26-PM-06_32_56
Theory : power!series
Home
Index