Nuprl Lemma : fps-mul-slice

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[n:ℕ]. ∀[f,g:PowerSeries(X;r)].
    ([(f*g)]_n fps-summation(r;upto(n 1);k.([f]_k*[g]_n k)) ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-slice: [f]_n fps-summation: fps-summation(r;b;x.f[x]) fps-mul: (f*g) power-series: PowerSeries(X;r) upto: upto(n) deq: EqDecider(T) nat: valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] subtract: m add: m natural_number: $n universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q cand: c∧ B crng: CRng power-series: PowerSeries(X;r) nat: subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: fps-coeff: f[b] squash: T rng: Rng so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q fps-slice: [f]_n fps-mul: (f*g) infix_ap: y bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b ring_p: IsRing(T;plus;zero;neg;times;one) group_p: IsGroup(T;op;id;inv) top: Top pi1: fst(t) pi2: snd(t) band: p ∧b q int_seg: {i..j-} so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] sq_exists: x:A [B[x]] lelt: i ≤ j < k ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) bag-member: x ↓∈ bs l_member: (x ∈ l) bag-no-repeats: bag-no-repeats(T;bs) nequal: a ≠ b ∈ 
Lemmas referenced :  rng_all_properties rng_plus_comm2 upto_wf list-subtype-bag int_seg_wf nat_wf int_seg_subtype_nat false_wf equal_wf squash_wf true_wf rng_car_wf fps-coeff_wf fps-slice_wf fps-mul_wf fps-summation-coeff subtract_wf iff_weakening_equal bag_wf power-series_wf crng_wf deq_wf valueall-type_wf crng_properties rng_properties eq_int_wf bag-size_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int bag-summation_wf assoc_wf comm_wf rng_plus_wf rng_zero_wf bag-summation-filter bag-partitions_wf band_wf pi1_wf_top pi2_wf rng_times_wf infix_ap_wf bag-summation-equal iff_transitivity assert_wf iff_weakening_uiff assert_of_band rng_times_zero bag-member_wf bag-summation-partition decidable__int_equal bag-subtype set_wf member_wf subtype_rel_bag bag-member-partitions bag-size-append nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf decidable__lt intformless_wf itermAdd_wf intformeq_wf int_formula_prop_less_lemma int_term_value_add_lemma int_formula_prop_eq_lemma lelt_wf subtype_rel_list equal-wf-base-T list_subtype_base int_subtype_base l_member_wf member_upto int_seg_properties le_wf decidable__equal_int less_than_wf length_wf select_wf add-is-int-iff itermSubtract_wf int_term_value_subtract_lemma no_repeats_upto no_repeats_wf equal-wf-T-base bag-summation-is-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis productElimination independent_pairFormation because_Cache functionExtensionality addEquality natural_numberEquality applyEquality independent_isectElimination sqequalRule lambdaFormation lambdaEquality imageElimination equalityTransitivity equalitySymmetry cumulativity dependent_functionElimination imageMemberEquality baseClosed universeEquality independent_functionElimination isect_memberEquality axiomEquality unionElimination equalityElimination dependent_pairFormation promote_hyp instantiate voidElimination productEquality functionEquality independent_pairEquality voidEquality intEquality hyp_replacement setEquality dependent_set_memberEquality dependent_set_memberFormation applyLambdaEquality int_eqEquality computeAll comment pointwiseFunctionality baseApply closedConclusion

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}].  \mforall{}[f,g:PowerSeries(X;r)].
        ([(f*g)]\_n  =  fps-summation(r;upto(n  +  1);k.([f]\_k*[g]\_n  -  k))) 
    supposing  valueall-type(X)



Date html generated: 2018_05_21-PM-09_56_21
Last ObjectModification: 2017_07_26-PM-06_32_56

Theory : power!series


Home Index