Nuprl Lemma : fps-summation-coeff

[X:Type]. ∀[r:CRng]. ∀[T:Type]. ∀[f:T ⟶ PowerSeries(X;r)]. ∀[b:bag(T)].
  ∀m:bag(X). (fps-summation(r;b;x.f[x])[m] = Σ(x∈b). f[x][m] ∈ |r|)


Proof




Definitions occuring in Statement :  fps-summation: fps-summation(r;b;x.f[x]) fps-coeff: f[b] power-series: PowerSeries(X;r) bag-summation: Σ(x∈b). f[x] bag: bag(T) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T crng: CRng rng_zero: 0 rng_plus: +r rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] squash: T exists: x:A. B[x] prop: crng: CRng rng: Rng so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a and: P ∧ Q cand: c∧ B fps-coeff: f[b] bag-summation: Σ(x∈b). f[x] fps-summation: fps-summation(r;b;x.f[x]) bag-accum: bag-accum(v,x.f[v; x];init;bs) fps-add: (f+g) fps-zero: 0 nat: implies:  Q false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A top: Top guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) less_than: a < b cons: [a b] assert: b ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q uiff: uiff(P;Q) rev_implies:  Q int_iseg: {i...j} so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] power-series: PowerSeries(X;r)
Lemmas referenced :  bag_to_squash_list equal_wf rng_car_wf fps-coeff_wf fps-summation_wf bag-summation_wf rng_plus_wf rng_zero_wf rng_all_properties rng_plus_comm2 bag_wf power-series_wf crng_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf le_wf length_wf int_seg_wf int_seg_properties decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma decidable__equal_int int_seg_subtype false_wf set_wf lelt_wf intformeq_wf int_formula_prop_eq_lemma non_neg_length decidable__lt decidable__assert null_wf3 subtype_rel_list top_wf list-cases product_subtype_list null_cons_lemma last-lemma-sq pos_length iff_transitivity not_wf equal-wf-T-base list_wf assert_wf bnot_wf assert_of_null iff_weakening_uiff assert_of_bnot firstn_wf length_firstn itermAdd_wf int_term_value_add_lemma nat_wf length_wf_nat list_accum_nil_lemma list_accum_cons_lemma last_wf list_accum_append
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality imageElimination productElimination promote_hyp hypothesis rename hyp_replacement equalitySymmetry Error :applyLambdaEquality,  setElimination because_Cache cumulativity sqequalRule lambdaEquality applyEquality functionExtensionality independent_isectElimination independent_pairFormation dependent_functionElimination axiomEquality isect_memberEquality functionEquality universeEquality intWeakElimination natural_numberEquality dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality computeAll independent_functionElimination unionElimination equalityTransitivity hypothesis_subsumption dependent_set_memberEquality baseClosed impliesFunctionality productEquality addEquality

Latex:
\mforall{}[X:Type].  \mforall{}[r:CRng].  \mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  PowerSeries(X;r)].  \mforall{}[b:bag(T)].
    \mforall{}m:bag(X).  (fps-summation(r;b;x.f[x])[m]  =  \mSigma{}(x\mmember{}b).  f[x][m])



Date html generated: 2016_10_25-AM-11_34_15
Last ObjectModification: 2016_07_12-AM-07_37_52

Theory : power!series


Home Index