Nuprl Lemma : fps-summation_wf

[X:Type]. ∀[r:CRng]. ∀[T:Type]. ∀[f:T ⟶ PowerSeries(X;r)]. ∀[b:bag(T)].
  (fps-summation(r;b;x.f[x]) ∈ PowerSeries(X;r))


Proof




Definitions occuring in Statement :  fps-summation: fps-summation(r;b;x.f[x]) power-series: PowerSeries(X;r) bag: bag(T) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fps-summation: fps-summation(r;b;x.f[x]) so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a and: P ∧ Q cand: c∧ B assoc: Assoc(T;op) infix_ap: y squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q comm: Comm(T;op)
Lemmas referenced :  bag-summation_wf power-series_wf fps-add_wf fps-zero_wf equal_wf squash_wf true_wf fps-add-assoc iff_weakening_equal fps-add-comm bag_wf crng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis lambdaEquality because_Cache applyEquality functionExtensionality independent_isectElimination imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality baseClosed universeEquality productElimination independent_functionElimination isect_memberEquality axiomEquality independent_pairFormation functionEquality

Latex:
\mforall{}[X:Type].  \mforall{}[r:CRng].  \mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  PowerSeries(X;r)].  \mforall{}[b:bag(T)].
    (fps-summation(r;b;x.f[x])  \mmember{}  PowerSeries(X;r))



Date html generated: 2018_05_21-PM-09_55_24
Last ObjectModification: 2017_07_26-PM-06_32_40

Theory : power!series


Home Index