Nuprl Lemma : fps-one-slice

[X:Type]. ∀[r:CRng]. ∀[n:ℤ].  ([1]_n if (n =z 0) then else fi  ∈ PowerSeries(X;r))


Proof




Definitions occuring in Statement :  fps-slice: [f]_n fps-one: 1 fps-zero: 0 power-series: PowerSeries(X;r) ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] natural_number: $n int: universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] fps-zero: 0 fps-one: 1 fps-coeff: f[b] fps-slice: [f]_n subtype_rel: A ⊆B implies:  Q bool: 𝔹 unit: Unit it: btrue: tt nat: ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A nequal: a ≠ b ∈  satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top crng: CRng rng: Rng
Lemmas referenced :  fps-ext fps-slice_wf fps-one_wf ifthenelse_wf eq_int_wf power-series_wf fps-zero_wf bag-size_wf bool_wf eqtt_to_assert assert_of_eq_int nat_wf bag-null_wf assert-bag-null eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot equal-wf-T-base bag_wf neg_assert_of_eq_int bag_size_empty_lemma satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_not_lemma int_formula_prop_wf rng_zero_wf crng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality cumulativity hypothesis natural_numberEquality productElimination independent_isectElimination lambdaFormation sqequalRule applyEquality because_Cache unionElimination equalityElimination equalityTransitivity equalitySymmetry lambdaEquality setElimination rename dependent_functionElimination dependent_pairFormation promote_hyp instantiate independent_functionElimination voidElimination baseClosed hyp_replacement applyLambdaEquality intEquality int_eqEquality isect_memberEquality voidEquality independent_pairFormation computeAll axiomEquality universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[r:CRng].  \mforall{}[n:\mBbbZ{}].    ([1]\_n  =  if  (n  =\msubz{}  0)  then  1  else  0  fi  )



Date html generated: 2018_05_21-PM-09_56_00
Last ObjectModification: 2017_07_26-PM-06_32_51

Theory : power!series


Home Index