Nuprl Lemma : fps-one-slice
∀[X:Type]. ∀[r:CRng]. ∀[n:ℤ].  ([1]_n = if (n =z 0) then 1 else 0 fi  ∈ PowerSeries(X;r))
Proof
Definitions occuring in Statement : 
fps-slice: [f]_n, 
fps-one: 1, 
fps-zero: 0, 
power-series: PowerSeries(X;r), 
ifthenelse: if b then t else f fi , 
eq_int: (i =z j), 
uall: ∀[x:A]. B[x], 
natural_number: $n, 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
fps-zero: 0, 
fps-one: 1, 
fps-coeff: f[b], 
fps-slice: [f]_n, 
subtype_rel: A ⊆r B, 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
nat: ℕ, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
nequal: a ≠ b ∈ T , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
crng: CRng, 
rng: Rng
Lemmas referenced : 
fps-ext, 
fps-slice_wf, 
fps-one_wf, 
ifthenelse_wf, 
eq_int_wf, 
power-series_wf, 
fps-zero_wf, 
bag-size_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
nat_wf, 
bag-null_wf, 
assert-bag-null, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
equal-wf-T-base, 
bag_wf, 
neg_assert_of_eq_int, 
bag_size_empty_lemma, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformnot_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_wf, 
rng_zero_wf, 
crng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
cumulativity, 
hypothesis, 
natural_numberEquality, 
productElimination, 
independent_isectElimination, 
lambdaFormation, 
sqequalRule, 
applyEquality, 
because_Cache, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
setElimination, 
rename, 
dependent_functionElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
independent_functionElimination, 
voidElimination, 
baseClosed, 
hyp_replacement, 
applyLambdaEquality, 
intEquality, 
int_eqEquality, 
isect_memberEquality, 
voidEquality, 
independent_pairFormation, 
computeAll, 
axiomEquality, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[r:CRng].  \mforall{}[n:\mBbbZ{}].    ([1]\_n  =  if  (n  =\msubz{}  0)  then  1  else  0  fi  )
Date html generated:
2018_05_21-PM-09_56_00
Last ObjectModification:
2017_07_26-PM-06_32_51
Theory : power!series
Home
Index