Step
*
of Lemma
fps-geometric-slice_lemma2
∀[X:Type]
∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[n:ℕ+]. ∀[m:ℕn]. ∀[g:PowerSeries(X;r)].
[(1÷(1-g))]_m = if (m =z 0) then 1 else 0 fi ∈ PowerSeries(X;r) supposing g = [g]_n ∈ PowerSeries(X;r)
supposing valueall-type(X)
BY
{ (Auto
THEN (Assert IsRing(|fps-rng(r)|;+fps-rng(r);0;-fps-rng(r);*;1) BY
((InstLemma `fps-rng_wf` [⌜X⌝;⌜eq⌝;⌜r⌝]⋅ THENA Auto)
THEN (MemTypeD (-1) THENA Auto)
THEN Fold `member` (-2)
THEN MemTypeD (-2)
THEN Auto))
THEN RepUR ``fps-rng`` -1
THEN (InstLemma `fps-mul-slice` [⌜X⌝;⌜eq⌝;⌜r⌝;⌜m⌝;⌜(1-g)⌝;⌜(1÷(1-g))⌝]⋅ THENA Auto)
THEN (InstLemma `fps-div-property` [⌜X⌝;⌜eq⌝;⌜r⌝;⌜1⌝;⌜(1-g)⌝;⌜1⌝]⋅
THENA (Auto
THEN RepUR ``fps-sub fps-neg fps-coeff fps-add fps-one bag-null empty-bag`` 0
THEN Fold `empty-bag` 0
THEN Subst' (g {}) = 0 ∈ |r| 0
THEN Auto
THEN RW RngNormC 0
THEN Auto
THEN (Fold `fps-coeff` 0 THEN Subst ⌜g[{}] = [g]_n[{}] ∈ |r|⌝ 0⋅ THEN Auto)⋅
THEN RepUR ``fps-coeff fps-slice`` 0
THEN AutoSplit)
)
THEN HypSubst' (-1) (-2)
THEN Auto
THEN Thin (-1)
THEN (InstLemma `fps-one-slice` [⌜X⌝;⌜r⌝;⌜m⌝]⋅ THENA Auto)
THEN (HypSubst' (-1) (-2) THENA Auto)
THEN Thin (-1)
THEN SplitOnHypITE -1
THEN Auto) }
1
.....truecase.....
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. r : CRng
5. n : ℕ+
6. m : ℕn
7. g : PowerSeries(X;r)
8. g = [g]_n ∈ PowerSeries(X;r)
9. IsRing(PowerSeries(X;r);λf,g. (f+g);0;λf.-(f);λf,g. (f*g);1)
10. 1 = fps-summation(r;upto(m + 1);k.([(1-g)]_k*[(1÷(1-g))]_m - k)) ∈ PowerSeries(X;r)
11. m = 0 ∈ ℤ
⊢ [(1÷(1-g))]_m = if (m =z 0) then 1 else 0 fi ∈ PowerSeries(X;r)
2
.....falsecase.....
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. r : CRng
5. n : ℕ+
6. m : ℕn
7. g : PowerSeries(X;r)
8. g = [g]_n ∈ PowerSeries(X;r)
9. IsRing(PowerSeries(X;r);λf,g. (f+g);0;λf.-(f);λf,g. (f*g);1)
10. 0 = fps-summation(r;upto(m + 1);k.([(1-g)]_k*[(1÷(1-g))]_m - k)) ∈ PowerSeries(X;r)
11. ¬(m = 0 ∈ ℤ)
⊢ [(1÷(1-g))]_m = if (m =z 0) then 1 else 0 fi ∈ PowerSeries(X;r)
Latex:
Latex:
\mforall{}[X:Type]
\mforall{}[eq:EqDecider(X)]. \mforall{}[r:CRng]. \mforall{}[n:\mBbbN{}\msupplus{}]. \mforall{}[m:\mBbbN{}n]. \mforall{}[g:PowerSeries(X;r)].
[(1\mdiv{}(1-g))]\_m = if (m =\msubz{} 0) then 1 else 0 fi supposing g = [g]\_n
supposing valueall-type(X)
By
Latex:
(Auto
THEN (Assert IsRing(|fps-rng(r)|;+fps-rng(r);0;-fps-rng(r);*;1) BY
((InstLemma `fps-rng\_wf` [\mkleeneopen{}X\mkleeneclose{};\mkleeneopen{}eq\mkleeneclose{};\mkleeneopen{}r\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (MemTypeD (-1) THENA Auto)
THEN Fold `member` (-2)
THEN MemTypeD (-2)
THEN Auto))
THEN RepUR ``fps-rng`` -1
THEN (InstLemma `fps-mul-slice` [\mkleeneopen{}X\mkleeneclose{};\mkleeneopen{}eq\mkleeneclose{};\mkleeneopen{}r\mkleeneclose{};\mkleeneopen{}m\mkleeneclose{};\mkleeneopen{}(1-g)\mkleeneclose{};\mkleeneopen{}(1\mdiv{}(1-g))\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (InstLemma `fps-div-property` [\mkleeneopen{}X\mkleeneclose{};\mkleeneopen{}eq\mkleeneclose{};\mkleeneopen{}r\mkleeneclose{};\mkleeneopen{}1\mkleeneclose{};\mkleeneopen{}(1-g)\mkleeneclose{};\mkleeneopen{}1\mkleeneclose{}]\mcdot{}
THENA (Auto
THEN RepUR ``fps-sub fps-neg fps-coeff fps-add fps-one bag-null empty-bag`` 0
THEN Fold `empty-bag` 0
THEN Subst' (g \{\}) = 0 0
THEN Auto
THEN RW RngNormC 0
THEN Auto
THEN (Fold `fps-coeff` 0 THEN Subst \mkleeneopen{}g[\{\}] = [g]\_n[\{\}]\mkleeneclose{} 0\mcdot{} THEN Auto)\mcdot{}
THEN RepUR ``fps-coeff fps-slice`` 0
THEN AutoSplit)
)
THEN HypSubst' (-1) (-2)
THEN Auto
THEN Thin (-1)
THEN (InstLemma `fps-one-slice` [\mkleeneopen{}X\mkleeneclose{};\mkleeneopen{}r\mkleeneclose{};\mkleeneopen{}m\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (HypSubst' (-1) (-2) THENA Auto)
THEN Thin (-1)
THEN SplitOnHypITE -1
THEN Auto)
Home
Index