Nuprl Lemma : fps-add-slice
∀[X:Type]. ∀[r:CRng]. ∀[n:ℤ]. ∀[f,g:PowerSeries(X;r)]. ([(f+g)]_n = ([f]_n+[g]_n) ∈ PowerSeries(X;r))
Proof
Definitions occuring in Statement :
fps-slice: [f]_n
,
fps-add: (f+g)
,
power-series: PowerSeries(X;r)
,
uall: ∀[x:A]. B[x]
,
int: ℤ
,
universe: Type
,
equal: s = t ∈ T
,
crng: CRng
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
fps-slice: [f]_n
,
fps-add: (f+g)
,
fps-coeff: f[b]
,
subtype_rel: A ⊆r B
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
nat: ℕ
,
ifthenelse: if b then t else f fi
,
crng: CRng
,
rng: Rng
,
power-series: PowerSeries(X;r)
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
prop: ℙ
,
or: P ∨ Q
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
,
false: False
,
true: True
,
squash: ↓T
,
infix_ap: x f y
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
Lemmas referenced :
fps-ext,
fps-slice_wf,
fps-add_wf,
eq_int_wf,
bag-size_wf,
bool_wf,
eqtt_to_assert,
assert_of_eq_int,
nat_wf,
rng_plus_wf,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_int,
bag_wf,
power-series_wf,
crng_wf,
rng_car_wf,
rng_zero_wf,
squash_wf,
true_wf,
rng_plus_zero,
iff_weakening_equal
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
cumulativity,
hypothesis,
productElimination,
independent_isectElimination,
lambdaFormation,
sqequalRule,
applyEquality,
because_Cache,
unionElimination,
equalityElimination,
equalityTransitivity,
equalitySymmetry,
lambdaEquality,
setElimination,
rename,
dependent_pairFormation,
promote_hyp,
dependent_functionElimination,
instantiate,
independent_functionElimination,
voidElimination,
isect_memberEquality,
axiomEquality,
intEquality,
universeEquality,
natural_numberEquality,
imageElimination,
imageMemberEquality,
baseClosed
Latex:
\mforall{}[X:Type]. \mforall{}[r:CRng]. \mforall{}[n:\mBbbZ{}]. \mforall{}[f,g:PowerSeries(X;r)]. ([(f+g)]\_n = ([f]\_n+[g]\_n))
Date html generated:
2018_05_21-PM-09_56_05
Last ObjectModification:
2017_07_26-PM-06_32_52
Theory : power!series
Home
Index