Nuprl Lemma : fps-set-to-one-single
∀[r:CRng]. ∀[y:Atom]. ∀[n:ℕ]. ∀[b:bag(Atom)].
([<b>]_n(y:=1) = if (#(b) =z n) then <(b|¬y)> else 0 fi ∈ PowerSeries(r))
Proof
Definitions occuring in Statement :
fps-set-to-one: [f]_n(y:=1)
,
fps-single: <c>
,
fps-zero: 0
,
power-series: PowerSeries(X;r)
,
bag-co-restrict: (b|¬x)
,
bag-size: #(bs)
,
bag: bag(T)
,
atom-deq: AtomDeq
,
nat: ℕ
,
ifthenelse: if b then t else f fi
,
eq_int: (i =z j)
,
uall: ∀[x:A]. B[x]
,
atom: Atom
,
equal: s = t ∈ T
,
crng: CRng
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
nat: ℕ
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
fps-zero: 0
,
fps-single: <c>
,
fps-coeff: f[b]
,
fps-set-to-one: [f]_n(y:=1)
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
bor: p ∨bq
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
prop: ℙ
,
or: P ∨ Q
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
,
false: False
,
not: ¬A
,
crng: CRng
,
rng: Rng
,
ge: i ≥ j
,
decidable: Dec(P)
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
top: Top
,
less_than: a < b
,
squash: ↓T
,
bag-co-restrict: (b|¬x)
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
deq: EqDecider(T)
,
rev_uimplies: rev_uimplies(P;Q)
,
atom-deq: AtomDeq
,
le: A ≤ B
,
nequal: a ≠ b ∈ T
,
true: True
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
Lemmas referenced :
fps-ext,
fps-set-to-one_wf,
fps-single_wf,
atom-deq_wf,
ifthenelse_wf,
eq_int_wf,
bag-size_wf,
power-series_wf,
bag-co-restrict_wf,
fps-zero_wf,
bag-restrict-split,
lt_int_wf,
bag-count_wf,
bool_wf,
eqtt_to_assert,
assert_of_lt_int,
nat_wf,
assert_of_eq_int,
bag-eq_wf,
assert-bag-eq,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
bag_wf,
rng_zero_wf,
neg_assert_of_eq_int,
less_than_wf,
bag-append_wf,
bag-rep_wf,
subtract_wf,
nat_properties,
decidable__le,
satisfiable-full-omega-tt,
intformand_wf,
intformnot_wf,
intformle_wf,
itermConstant_wf,
itermSubtract_wf,
itermVar_wf,
intformless_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_subtract_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
le_wf,
list-subtype-bag,
crng_wf,
bag-member-count,
bag-member_wf,
atomdeq_reduce_lemma,
bag-member-filter,
bnot_wf,
eq_atom_wf,
assert_elim,
eq_atom-reflexive,
bfalse_wf,
and_wf,
btrue_neq_bfalse,
bag-size-append,
bag-restrict_wf,
intformeq_wf,
itermAdd_wf,
int_formula_prop_eq_lemma,
int_term_value_add_lemma,
rng_one_wf,
bag-subtype-list,
bag-co-restrict-append,
bag-co-restrict-rep,
bag-append-empty,
bag-filter-same,
deq_wf,
assert_of_bnot,
neg_assert_of_eq_atom,
atom_subtype_base,
equal-wf-base,
bag-size-rep,
decidable__equal_int,
squash_wf,
true_wf,
bag-append-comm,
iff_weakening_equal,
bag-rep-size-restrict,
add-is-int-iff,
false_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
because_Cache,
hypothesisEquality,
atomEquality,
hypothesis,
applyEquality,
sqequalRule,
setElimination,
rename,
productElimination,
independent_isectElimination,
lambdaFormation,
natural_numberEquality,
unionElimination,
equalityElimination,
equalityTransitivity,
equalitySymmetry,
lambdaEquality,
dependent_pairFormation,
promote_hyp,
dependent_functionElimination,
instantiate,
independent_functionElimination,
voidElimination,
cumulativity,
dependent_set_memberEquality,
int_eqEquality,
intEquality,
isect_memberEquality,
voidEquality,
independent_pairFormation,
computeAll,
axiomEquality,
imageElimination,
hyp_replacement,
applyLambdaEquality,
addEquality,
universeEquality,
imageMemberEquality,
baseClosed,
pointwiseFunctionality,
baseApply,
closedConclusion
Latex:
\mforall{}[r:CRng]. \mforall{}[y:Atom]. \mforall{}[n:\mBbbN{}]. \mforall{}[b:bag(Atom)].
([<b>]\_n(y:=1) = if (\#(b) =\msubz{} n) then <(b|\mneg{}y)> else 0 fi )
Date html generated:
2018_05_21-PM-10_13_07
Last ObjectModification:
2017_07_26-PM-06_35_18
Theory : power!series
Home
Index