Nuprl Lemma : bag-filter-same
∀[T:Type]. ∀[p:T ⟶ 𝔹]. ∀[bs:bag(T)].  [x∈bs|p[x]] = bs ∈ bag(T) supposing ∀x:T. (x ↓∈ bs 
⇒ (↑p[x]))
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
bag-filter: [x∈b|p[x]]
, 
bag: bag(T)
, 
assert: ↑b
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
squash: ↓T
Lemmas referenced : 
bag-filter-trivial, 
bag-member_wf, 
subtype_rel_dep_function, 
bool_wf, 
subtype_rel_self, 
set_wf, 
sq_stable__bag-member, 
bag-settype, 
all_wf, 
assert_wf, 
bag_wf, 
equal_wf, 
subtype_rel_bag
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setEquality, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
independent_isectElimination, 
setElimination, 
rename, 
lambdaFormation, 
dependent_functionElimination, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
functionEquality, 
functionExtensionality, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
hyp_replacement, 
Error :applyLambdaEquality
Latex:
\mforall{}[T:Type].  \mforall{}[p:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[bs:bag(T)].    [x\mmember{}bs|p[x]]  =  bs  supposing  \mforall{}x:T.  (x  \mdownarrow{}\mmember{}  bs  {}\mRightarrow{}  (\muparrow{}p[x]))
Date html generated:
2016_10_25-AM-10_32_45
Last ObjectModification:
2016_07_12-AM-06_49_15
Theory : bags
Home
Index