Nuprl Lemma : eq_atom-reflexive

[x:Atom]. =a tt


Proof




Definitions occuring in Statement :  eq_atom: =a y btrue: tt bool: 𝔹 uall: [x:A]. B[x] atom: Atom equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q implies:  Q true: True prop: rev_implies:  Q uiff: uiff(P;Q) assert: b ifthenelse: if then else fi  btrue: tt
Lemmas referenced :  iff_imp_equal_bool eq_atom_wf btrue_wf equal_wf true_wf assert_of_eq_atom assert_wf iff_wf member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination independent_pairFormation lambdaFormation natural_numberEquality atomEquality addLevel productElimination impliesFunctionality because_Cache

Latex:
\mforall{}[x:Atom].  x  =a  x  =  tt



Date html generated: 2016_05_13-PM-03_56_50
Last ObjectModification: 2015_12_26-AM-10_52_02

Theory : bool_1


Home Index