Nuprl Lemma : eq_atom-reflexive
∀[x:Atom]. x =a x = tt
Proof
Definitions occuring in Statement : 
eq_atom: x =a y
, 
btrue: tt
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
atom: Atom
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
true: True
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
Lemmas referenced : 
iff_imp_equal_bool, 
eq_atom_wf, 
btrue_wf, 
equal_wf, 
true_wf, 
assert_of_eq_atom, 
assert_wf, 
iff_wf, 
member_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
natural_numberEquality, 
atomEquality, 
addLevel, 
productElimination, 
impliesFunctionality, 
because_Cache
Latex:
\mforall{}[x:Atom].  x  =a  x  =  tt
Date html generated:
2016_05_13-PM-03_56_50
Last ObjectModification:
2015_12_26-AM-10_52_02
Theory : bool_1
Home
Index