Nuprl Lemma : fps-mul-ucont

[X:Type]. ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[g:PowerSeries(X;r)].  fps-ucont(X;eq;r;f.(f*g)) supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-ucont: fps-ucont(X;eq;r;f.G[f]) fps-mul: (f*g) power-series: PowerSeries(X;r) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] universe: Type crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T valueall-type: valueall-type(T) has-value: (a)↓ prop: fps-ucont: fps-ucont(X;eq;r;f.G[f]) all: x:A. B[x] exists: x:A. B[x] fps-restrict: fps-restrict(eq;r;f;d) fps-mul: (f*g) fps-coeff: f[b] crng: CRng rng: Rng so_lambda: λ2x.t[x] power-series: PowerSeries(X;r) top: Top so_apply: x[s] pi1: fst(t) implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q iff: ⇐⇒ Q bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A rev_implies:  Q pi2: snd(t) cand: c∧ B sub-bag: sub-bag(T;as;bs) ring_p: IsRing(T;plus;zero;neg;times;one) group_p: IsGroup(T;op;id;inv)
Lemmas referenced :  equal-wf-base base_wf bag-summation-equal bag_wf rng_car_wf rng_plus_wf rng_zero_wf bag-partitions_wf rng_times_wf pi1_wf_top pi2_wf deq-sub-bag_wf bool_wf eqtt_to_assert assert-deq-sub-bag eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot sub-bag_wf bag-member_wf rng_plus_comm2 all_wf power-series_wf fps-coeff_wf fps-mul_wf fps-restrict_wf crng_wf deq_wf valueall-type_wf bag-member-partitions bag-append_wf crng_properties rng_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality axiomSqleEquality hypothesis extract_by_obid because_Cache equalityTransitivity equalitySymmetry rename lambdaFormation dependent_pairFormation productEquality cumulativity setElimination independent_isectElimination lambdaEquality applyEquality productElimination independent_pairEquality voidElimination voidEquality unionElimination equalityElimination dependent_functionElimination independent_functionElimination promote_hyp instantiate independent_pairFormation universeEquality

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[g:PowerSeries(X;r)].    fps-ucont(X;eq;r;f.(f*g)) 
    supposing  valueall-type(X)



Date html generated: 2018_05_21-PM-10_11_15
Last ObjectModification: 2017_07_26-PM-06_34_39

Theory : power!series


Home Index