Step * 1 of Lemma KozenSilva-lemma


1. CRng
2. Atom
3. Atom
4. PowerSeries(r)
5. : ℕ
6. : ℕ
7. n ≤ m
8. ¬(x y ∈ Atom)
⊢ [([h]_n(y:=1)*Δ(x,y))]_m ([h]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m n)) ∈ PowerSeries(r)
BY
xxx(InstLemma `fps-linear-ucont-equal` [⌜Atom⌝;⌜AtomDeq⌝;⌜r⌝;⌜λ2h.[([h]_n(y:=1)*Δ(x,y))]_m⌝;
      ⌜λ2h.([h]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m n))⌝]⋅
      THENA Auto'
      )⋅xxx }

1
1. CRng
2. Atom
3. Atom
4. PowerSeries(r)
5. : ℕ
6. : ℕ
7. n ≤ m
8. ¬(x y ∈ Atom)
⊢ fps-ucont(Atom;AtomDeq;r;f.[([f]_n(y:=1)*Δ(x,y))]_m)

2
1. CRng
2. Atom
3. Atom
4. PowerSeries(r)
5. : ℕ
6. : ℕ
7. n ≤ m
8. ¬(x y ∈ Atom)
9. fps-ucont(Atom;AtomDeq;r;f.[([f]_n(y:=1)*Δ(x,y))]_m)
⊢ fps-ucont(Atom;AtomDeq;r;f.([f]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m n)))

3
1. CRng
2. Atom
3. Atom
4. PowerSeries(r)
5. : ℕ
6. : ℕ
7. n ≤ m
8. ¬(x y ∈ Atom)
9. fps-ucont(Atom;AtomDeq;r;f.[([f]_n(y:=1)*Δ(x,y))]_m)
10. fps-ucont(Atom;AtomDeq;r;f.([f]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m n)))
11. PowerSeries(r)
12. PowerSeries(r)
⊢ [([(f+g)]_n(y:=1)*Δ(x,y))]_m ([([f]_n(y:=1)*Δ(x,y))]_m+[([g]_n(y:=1)*Δ(x,y))]_m) ∈ PowerSeries(r)

4
1. CRng
2. Atom
3. Atom
4. PowerSeries(r)
5. : ℕ
6. : ℕ
7. n ≤ m
8. ¬(x y ∈ Atom)
9. fps-ucont(Atom;AtomDeq;r;f.[([f]_n(y:=1)*Δ(x,y))]_m)
10. fps-ucont(Atom;AtomDeq;r;f.([f]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m n)))
11. ∀f,g:PowerSeries(r).
      ([([(f+g)]_n(y:=1)*Δ(x,y))]_m ([([f]_n(y:=1)*Δ(x,y))]_m+[([g]_n(y:=1)*Δ(x,y))]_m) ∈ PowerSeries(r))
12. PowerSeries(r)
13. PowerSeries(r)
⊢ ([(f+g)]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m n))
(([f]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m n))+([g]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m n)))
∈ PowerSeries(r)

5
1. CRng
2. Atom
3. Atom
4. PowerSeries(r)
5. : ℕ
6. : ℕ
7. n ≤ m
8. ¬(x y ∈ Atom)
9. fps-ucont(Atom;AtomDeq;r;f.[([f]_n(y:=1)*Δ(x,y))]_m)
10. fps-ucont(Atom;AtomDeq;r;f.([f]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m n)))
11. ∀f,g:PowerSeries(r).
      ([([(f+g)]_n(y:=1)*Δ(x,y))]_m ([([f]_n(y:=1)*Δ(x,y))]_m+[([g]_n(y:=1)*Δ(x,y))]_m) ∈ PowerSeries(r))
12. ∀f,g:PowerSeries(r).
      (([(f+g)]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m n))
      (([f]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m n))+([g]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m 
         n)))
      ∈ PowerSeries(r))
13. |r|
14. PowerSeries(r)
⊢ [([(c)*f]_n(y:=1)*Δ(x,y))]_m (c)*[([f]_n(y:=1)*Δ(x,y))]_m ∈ PowerSeries(r)

6
1. CRng
2. Atom
3. Atom
4. PowerSeries(r)
5. : ℕ
6. : ℕ
7. n ≤ m
8. ¬(x y ∈ Atom)
9. fps-ucont(Atom;AtomDeq;r;f.[([f]_n(y:=1)*Δ(x,y))]_m)
10. fps-ucont(Atom;AtomDeq;r;f.([f]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m n)))
11. ∀f,g:PowerSeries(r).
      ([([(f+g)]_n(y:=1)*Δ(x,y))]_m ([([f]_n(y:=1)*Δ(x,y))]_m+[([g]_n(y:=1)*Δ(x,y))]_m) ∈ PowerSeries(r))
12. ∀f,g:PowerSeries(r).
      (([(f+g)]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m n))
      (([f]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m n))+([g]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m 
         n)))
      ∈ PowerSeries(r))
13. ∀c:|r|. ∀f:PowerSeries(r).  ([([(c)*f]_n(y:=1)*Δ(x,y))]_m (c)*[([f]_n(y:=1)*Δ(x,y))]_m ∈ PowerSeries(r))
14. |r|
15. PowerSeries(r)
⊢ ([(c)*f]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m n))
(c)*([f]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m n))
∈ PowerSeries(r)

7
1. CRng
2. Atom
3. Atom
4. PowerSeries(r)
5. : ℕ
6. : ℕ
7. n ≤ m
8. ¬(x y ∈ Atom)
9. fps-ucont(Atom;AtomDeq;r;f.[([f]_n(y:=1)*Δ(x,y))]_m)
10. fps-ucont(Atom;AtomDeq;r;f.([f]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m n)))
11. ∀f,g:PowerSeries(r).
      ([([(f+g)]_n(y:=1)*Δ(x,y))]_m ([([f]_n(y:=1)*Δ(x,y))]_m+[([g]_n(y:=1)*Δ(x,y))]_m) ∈ PowerSeries(r))
12. ∀f,g:PowerSeries(r).
      (([(f+g)]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m n))
      (([f]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m n))+([g]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m 
         n)))
      ∈ PowerSeries(r))
13. ∀c:|r|. ∀f:PowerSeries(r).  ([([(c)*f]_n(y:=1)*Δ(x,y))]_m (c)*[([f]_n(y:=1)*Δ(x,y))]_m ∈ PowerSeries(r))
14. ∀c:|r|. ∀f:PowerSeries(r).
      (([(c)*f]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m n))
      (c)*([f]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m n))
      ∈ PowerSeries(r))
15. bag(Atom)
⊢ [([<b>]_n(y:=1)*Δ(x,y))]_m ([<b>]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m n)) ∈ PowerSeries(r)

8
1. CRng
2. Atom
3. Atom
4. PowerSeries(r)
5. : ℕ
6. : ℕ
7. n ≤ m
8. ¬(x y ∈ Atom)
9. λ2h.[([h]_n(y:=1)*Δ(x,y))]_m
= λ2h.([h]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m n))
∈ (PowerSeries(r) ⟶ PowerSeries(r))
⊢ [([h]_n(y:=1)*Δ(x,y))]_m ([h]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m n)) ∈ PowerSeries(r)


Latex:


Latex:

1.  r  :  CRng
2.  x  :  Atom
3.  y  :  Atom
4.  h  :  PowerSeries(r)
5.  n  :  \mBbbN{}
6.  m  :  \mBbbN{}
7.  n  \mleq{}  m
8.  \mneg{}(x  =  y)
\mvdash{}  [([h]\_n(y:=1)*\mDelta{}(x,y))]\_m  =  ([h]\_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))\^{}(m  -  n))


By


Latex:
xxx(InstLemma  `fps-linear-ucont-equal`  [\mkleeneopen{}Atom\mkleeneclose{};\mkleeneopen{}AtomDeq\mkleeneclose{};\mkleeneopen{}r\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}h.[([h]\_n(y:=1)*\mDelta{}(x,y))]\_m\mkleeneclose{};
        \mkleeneopen{}\mlambda{}\msubtwo{}h.([h]\_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))\^{}(m  -  n))\mkleeneclose{}]\mcdot{}
        THENA  Auto'
        )\mcdot{}xxx




Home Index