Step
*
1
8
of Lemma
KozenSilva-lemma
1. r : CRng
2. x : Atom
3. y : Atom
4. h : PowerSeries(r)
5. n : ℕ
6. m : ℕ
7. n ≤ m
8. ¬(x = y ∈ Atom)
9. λ2h.[([h]_n(y:=1)*Δ(x,y))]_m
= λ2h.([h]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m - n))
∈ (PowerSeries(r) ⟶ PowerSeries(r))
⊢ [([h]_n(y:=1)*Δ(x,y))]_m = ([h]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m - n)) ∈ PowerSeries(r)
BY
{ xxx((ApFunToHypEquands `Z' ⌜Z[h]⌝ ⌜PowerSeries(r)⌝ (-1)⋅ THEN Auto)
THEN RepUR ``so_apply so_lambda`` -1
THEN Auto)xxx }
Latex:
Latex:
1. r : CRng
2. x : Atom
3. y : Atom
4. h : PowerSeries(r)
5. n : \mBbbN{}
6. m : \mBbbN{}
7. n \mleq{} m
8. \mneg{}(x = y)
9. \mlambda{}\msubtwo{}h.[([h]\_n(y:=1)*\mDelta{}(x,y))]\_m = \mlambda{}\msubtwo{}h.([h]\_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))\^{}(m - n))
\mvdash{} [([h]\_n(y:=1)*\mDelta{}(x,y))]\_m = ([h]\_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))\^{}(m - n))
By
Latex:
xxx((ApFunToHypEquands `Z' \mkleeneopen{}Z[h]\mkleeneclose{} \mkleeneopen{}PowerSeries(r)\mkleeneclose{} (-1)\mcdot{} THEN Auto)
THEN RepUR ``so\_apply so\_lambda`` -1
THEN Auto)xxx
Home
Index