Step
*
1
7
of Lemma
KozenSilva-lemma
1. r : CRng
2. x : Atom
3. y : Atom
4. h : PowerSeries(r)
5. n : ℕ
6. m : ℕ
7. n ≤ m
8. ¬(x = y ∈ Atom)
9. fps-ucont(Atom;AtomDeq;r;f.[([f]_n(y:=1)*Δ(x,y))]_m)
10. fps-ucont(Atom;AtomDeq;r;f.([f]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m - n)))
11. ∀f,g:PowerSeries(r).
      ([([(f+g)]_n(y:=1)*Δ(x,y))]_m = ([([f]_n(y:=1)*Δ(x,y))]_m+[([g]_n(y:=1)*Δ(x,y))]_m) ∈ PowerSeries(r))
12. ∀f,g:PowerSeries(r).
      (([(f+g)]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m - n))
      = (([f]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m - n))+([g]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m 
         - n)))
      ∈ PowerSeries(r))
13. ∀c:|r|. ∀f:PowerSeries(r).  ([([(c)*f]_n(y:=1)*Δ(x,y))]_m = (c)*[([f]_n(y:=1)*Δ(x,y))]_m ∈ PowerSeries(r))
14. ∀c:|r|. ∀f:PowerSeries(r).
      (([(c)*f]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m - n))
      = (c)*([f]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m - n))
      ∈ PowerSeries(r))
15. b : bag(Atom)
⊢ [([<b>]_n(y:=1)*Δ(x,y))]_m = ([<b>]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m - n)) ∈ PowerSeries(r)
BY
{ xxx((RWO "fps-set-to-one-single fps-single-slice" 0 THEN Auto') THEN AutoSplit)xxx }
1
1. r : CRng
2. x : Atom
3. y : Atom
4. h : PowerSeries(r)
5. n : ℕ
6. m : ℕ
7. n ≤ m
8. ¬(x = y ∈ Atom)
9. fps-ucont(Atom;AtomDeq;r;f.[([f]_n(y:=1)*Δ(x,y))]_m)
10. fps-ucont(Atom;AtomDeq;r;f.([f]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m - n)))
11. ∀f,g:PowerSeries(r).
      ([([(f+g)]_n(y:=1)*Δ(x,y))]_m = ([([f]_n(y:=1)*Δ(x,y))]_m+[([g]_n(y:=1)*Δ(x,y))]_m) ∈ PowerSeries(r))
12. ∀f,g:PowerSeries(r).
      (([(f+g)]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m - n))
      = (([f]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m - n))+([g]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m 
         - n)))
      ∈ PowerSeries(r))
13. ∀c:|r|. ∀f:PowerSeries(r).  ([([(c)*f]_n(y:=1)*Δ(x,y))]_m = (c)*[([f]_n(y:=1)*Δ(x,y))]_m ∈ PowerSeries(r))
14. ∀c:|r|. ∀f:PowerSeries(r).
      (([(c)*f]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m - n))
      = (c)*([f]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m - n))
      ∈ PowerSeries(r))
15. b : bag(Atom)
16. #(b) = n ∈ ℤ
⊢ [(<(b|¬y)>*Δ(x,y))]_m = (<b>(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m - n)) ∈ PowerSeries(r)
2
1. r : CRng
2. x : Atom
3. y : Atom
4. h : PowerSeries(r)
5. n : ℕ
6. m : ℕ
7. n ≤ m
8. ¬(x = y ∈ Atom)
9. fps-ucont(Atom;AtomDeq;r;f.[([f]_n(y:=1)*Δ(x,y))]_m)
10. fps-ucont(Atom;AtomDeq;r;f.([f]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m - n)))
11. ∀f,g:PowerSeries(r).
      ([([(f+g)]_n(y:=1)*Δ(x,y))]_m = ([([f]_n(y:=1)*Δ(x,y))]_m+[([g]_n(y:=1)*Δ(x,y))]_m) ∈ PowerSeries(r))
12. ∀f,g:PowerSeries(r).
      (([(f+g)]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m - n))
      = (([f]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m - n))+([g]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m 
         - n)))
      ∈ PowerSeries(r))
13. ∀c:|r|. ∀f:PowerSeries(r).  ([([(c)*f]_n(y:=1)*Δ(x,y))]_m = (c)*[([f]_n(y:=1)*Δ(x,y))]_m ∈ PowerSeries(r))
14. ∀c:|r|. ∀f:PowerSeries(r).
      (([(c)*f]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m - n))
      = (c)*([f]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m - n))
      ∈ PowerSeries(r))
15. b : bag(Atom)
16. #(b) ≠ n
⊢ [(0*Δ(x,y))]_m = (0(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m - n)) ∈ PowerSeries(r)
Latex:
Latex:
1.  r  :  CRng
2.  x  :  Atom
3.  y  :  Atom
4.  h  :  PowerSeries(r)
5.  n  :  \mBbbN{}
6.  m  :  \mBbbN{}
7.  n  \mleq{}  m
8.  \mneg{}(x  =  y)
9.  fps-ucont(Atom;AtomDeq;r;f.[([f]\_n(y:=1)*\mDelta{}(x,y))]\_m)
10.  fps-ucont(Atom;AtomDeq;r;f.([f]\_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))\^{}(m  -  n)))
11.  \mforall{}f,g:PowerSeries(r).
            ([([(f+g)]\_n(y:=1)*\mDelta{}(x,y))]\_m  =  ([([f]\_n(y:=1)*\mDelta{}(x,y))]\_m+[([g]\_n(y:=1)*\mDelta{}(x,y))]\_m))
12.  \mforall{}f,g:PowerSeries(r).
            (([(f+g)]\_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))\^{}(m  -  n))
            =  (([f]\_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))\^{}(m  -  n))
                  +([g]\_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))\^{}(m  -  n))))
13.  \mforall{}c:|r|.  \mforall{}f:PowerSeries(r).    ([([(c)*f]\_n(y:=1)*\mDelta{}(x,y))]\_m  =  (c)*[([f]\_n(y:=1)*\mDelta{}(x,y))]\_m)
14.  \mforall{}c:|r|.  \mforall{}f:PowerSeries(r).
            (([(c)*f]\_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))\^{}(m  -  n))
            =  (c)*([f]\_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))\^{}(m  -  n)))
15.  b  :  bag(Atom)
\mvdash{}  [([<b>]\_n(y:=1)*\mDelta{}(x,y))]\_m  =  ([<b>]\_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))\^{}(m  -  n))
By
Latex:
xxx((RWO  "fps-set-to-one-single  fps-single-slice"  0  THEN  Auto')  THEN  AutoSplit)xxx
Home
Index