Step
*
1
of Lemma
fps-compose-atom-neq
.....assertion.....
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. r : CRng
5. x : X
6. y : X
7. ¬(x = y ∈ X)
8. f : PowerSeries(X;r)
9. Comm(|r|;+r)
10. Assoc(|r|;*)
11. Comm(|r|;*)
12. IsMonoid(|r|;+r;0)
13. ∀L:bag(X) List+. (Πa ∈ tl(L). f a ∈ |r|)
14. b : bag(X)
⊢ Σ(L∈bag-parts'(eq;b;x)). if bag-eq(eq;hd(L) + bag-rep(||tl(L)||;x);{y}) then 1 else 0 fi * Πa ∈ tl(L). f a
= Σ(L∈bag-parts'(eq;b;x)). if bag-eq(eq;hd(L) + bag-rep(||tl(L)||;x);{y}) then Πa ∈ tl(L). f a else 0 fi
∈ |r|
BY
{ (EqCD THEN Auto THEN AutoSplit THEN RW RngNormC 0 THEN Auto) }
Latex:
Latex:
.....assertion.....
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. r : CRng
5. x : X
6. y : X
7. \mneg{}(x = y)
8. f : PowerSeries(X;r)
9. Comm(|r|;+r)
10. Assoc(|r|;*)
11. Comm(|r|;*)
12. IsMonoid(|r|;+r;0)
13. \mforall{}L:bag(X) List\msupplus{}. (\mPi{}a \mmember{} tl(L). f a \mmember{} |r|)
14. b : bag(X)
\mvdash{} \mSigma{}(L\mmember{}bag-parts'(eq;b;x)). if bag-eq(eq;hd(L) + bag-rep(||tl(L)||;x);\{y\}) then 1 else 0 fi
*
\mPi{}a \mmember{} tl(L). f a
= \mSigma{}(L\mmember{}bag-parts'(eq;b;x)). if bag-eq(eq;hd(L) + bag-rep(||tl(L)||;x);\{y\})
then \mPi{}a \mmember{} tl(L). f a
else 0
fi
By
Latex:
(EqCD THEN Auto THEN AutoSplit THEN RW RngNormC 0 THEN Auto)
Home
Index