Step
*
1
2
1
1
3
1
of Lemma
fps-compose-mul
.....wf..... 
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. r : CRng
5. x : X
6. g : PowerSeries(X;r)
7. f : PowerSeries(X;r)
8. h : PowerSeries(X;r)
9. ∀L:bag(X) List+. (||L|| ≥ 1 )
10. Assoc(|r|;+r)
11. IsMonoid(|r|;+r;0)
12. Comm(|r|;+r)
13. Comm(|r|;*)
14. Assoc(|r|;*)
15. ∀L:bag(X) List+. (Πa ∈ tl(L). f a ∈ |r|)
16. b : bag(X)
⊢ ⋃L∈bag-parts'(eq;b;x).bag-map(λp.<L, p>bag-partitions(eq;hd(L) + bag-rep(||tl(L)||;x))) ∈ bag(bag(X) List+
  × bag(X)
  × bag(X))
BY
{ TACTIC:(Folds ``tlp hdp`` 0 THEN Auto)⋅ }
Latex:
Latex:
.....wf..... 
1.  X  :  Type
2.  valueall-type(X)
3.  eq  :  EqDecider(X)
4.  r  :  CRng
5.  x  :  X
6.  g  :  PowerSeries(X;r)
7.  f  :  PowerSeries(X;r)
8.  h  :  PowerSeries(X;r)
9.  \mforall{}L:bag(X)  List\msupplus{}.  (||L||  \mgeq{}  1  )
10.  Assoc(|r|;+r)
11.  IsMonoid(|r|;+r;0)
12.  Comm(|r|;+r)
13.  Comm(|r|;*)
14.  Assoc(|r|;*)
15.  \mforall{}L:bag(X)  List\msupplus{}.  (\mPi{}a  \mmember{}  tl(L).  f  a  \mmember{}  |r|)
16.  b  :  bag(X)
\mvdash{}  \mcup{}L\mmember{}bag-parts'(eq;b;x).bag-map(\mlambda{}p.<L,  p>bag-partitions(eq;hd(L)  +  bag-rep(||tl(L)||;x)))
    \mmember{}  bag(bag(X)  List\msupplus{}  \mtimes{}  bag(X)  \mtimes{}  bag(X))
By
Latex:
TACTIC:(Folds  ``tlp  hdp``  0  THEN  Auto)\mcdot{}
Home
Index