Step
*
1
1
1
of Lemma
fps-compose-ucont
.....assertion.....
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. r : CRng
5. g : PowerSeries(X;r)
6. x : X
7. Comm(|r|;+r)
8. IsMonoid(|r|;+r;0)
9. Assoc(|r|;*)
10. Comm(|r|;*)
11. b : bag(X)
12. f : PowerSeries(X;r)
13. L : bag(X) List+
14. (¬x ↓∈ hd(L)) ∧ (∀x∈tl(L).¬(x = {} ∈ bag(X))) ∧ (bag-union(L) = b ∈ bag(X))
⊢ sub-bag(X;hd(L);b) ∧ sub-bag(X;bag-rep(||tl(L)||;x);bag-rep(#(b);x))
BY
{ TACTIC:Auto }
1
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. r : CRng
5. g : PowerSeries(X;r)
6. x : X
7. Comm(|r|;+r)
8. IsMonoid(|r|;+r;0)
9. Assoc(|r|;*)
10. Comm(|r|;*)
11. b : bag(X)
12. f : PowerSeries(X;r)
13. L : bag(X) List+
14. ¬x ↓∈ hd(L)
15. (∀x∈tl(L).¬(x = {} ∈ bag(X)))
16. bag-union(L) = b ∈ bag(X)
⊢ sub-bag(X;hd(L);b)
2
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. r : CRng
5. g : PowerSeries(X;r)
6. x : X
7. Comm(|r|;+r)
8. IsMonoid(|r|;+r;0)
9. Assoc(|r|;*)
10. Comm(|r|;*)
11. b : bag(X)
12. f : PowerSeries(X;r)
13. L : bag(X) List+
14. ¬x ↓∈ hd(L)
15. (∀x∈tl(L).¬(x = {} ∈ bag(X)))
16. bag-union(L) = b ∈ bag(X)
17. sub-bag(X;hd(L);b)
⊢ sub-bag(X;bag-rep(||tl(L)||;x);bag-rep(#(b);x))
Latex:
Latex:
.....assertion.....
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. r : CRng
5. g : PowerSeries(X;r)
6. x : X
7. Comm(|r|;+r)
8. IsMonoid(|r|;+r;0)
9. Assoc(|r|;*)
10. Comm(|r|;*)
11. b : bag(X)
12. f : PowerSeries(X;r)
13. L : bag(X) List\msupplus{}
14. (\mneg{}x \mdownarrow{}\mmember{} hd(L)) \mwedge{} (\mforall{}x\mmember{}tl(L).\mneg{}(x = \{\})) \mwedge{} (bag-union(L) = b)
\mvdash{} sub-bag(X;hd(L);b) \mwedge{} sub-bag(X;bag-rep(||tl(L)||;x);bag-rep(\#(b);x))
By
Latex:
TACTIC:Auto
Home
Index