Step
*
1
1
of Lemma
fps-deriv-div
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. r : CRng
5. f : PowerSeries(X;r)
6. g : PowerSeries(X;r)
7. x : X
8. u : |r|
9. (g[{}] * u) = 1 ∈ |r|
⊢ (((g[{}] * g[{}]) +r 0) * (u * u)) = 1 ∈ |r|
BY
{ (RW RngNormC 0 THENA Auto) }
1
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. r : CRng
5. f : PowerSeries(X;r)
6. g : PowerSeries(X;r)
7. x : X
8. u : |r|
9. (g[{}] * u) = 1 ∈ |r|
⊢ (g[{}] * (g[{}] * (u * u))) = 1 ∈ |r|
Latex:
Latex:
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. r : CRng
5. f : PowerSeries(X;r)
6. g : PowerSeries(X;r)
7. x : X
8. u : |r|
9. (g[\{\}] * u) = 1
\mvdash{} (((g[\{\}] * g[\{\}]) +r 0) * (u * u)) = 1
By
Latex:
(RW RngNormC 0 THENA Auto)
Home
Index