Nuprl Lemma : fps-deriv-div
∀[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[f,g:PowerSeries(X;r)]. ∀[x:X]. ∀[u:|r|].
    d(f÷g)/dx = (((df/dx*g)-(f*dg/dx))÷(g*g)) ∈ PowerSeries(X;r) supposing (g[{}] * u) = 1 ∈ |r| 
  supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-deriv: df/dx
, 
fps-div: (f÷g)
, 
fps-mul: (f*g)
, 
fps-sub: (f-g)
, 
fps-coeff: f[b]
, 
power-series: PowerSeries(X;r)
, 
empty-bag: {}
, 
deq: EqDecider(T)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
universe: Type
, 
equal: s = t ∈ T
, 
crng: CRng
, 
rng_one: 1
, 
rng_times: *
, 
rng_car: |r|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
infix_ap: x f y
, 
crng: CRng
, 
rng: Rng
, 
true: True
, 
squash: ↓T
, 
prop: ℙ
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
fps-sub: (f-g)
Lemmas referenced : 
rng_times_wf, 
fps-coeff_wf, 
empty-bag_wf, 
rng_one_wf, 
rng_car_wf, 
power-series_wf, 
crng_wf, 
deq_wf, 
valueall-type_wf, 
istype-universe, 
fps-mul-coeff0, 
rng_zero_wf, 
rng_plus_wf, 
equal_wf, 
squash_wf, 
true_wf, 
rng_times_over_plus, 
subtype_rel_self, 
rng_times_zero, 
rng_times_assoc, 
rng_plus_zero, 
iff_weakening_equal, 
crng_times_ac_1, 
rng_times_one, 
fps-one_wf, 
fps-div_wf, 
fps-deriv-mul, 
fps-deriv_wf, 
fps-div-property, 
fps-deriv-one, 
fps-mul_wf, 
fps-neg_wf, 
fps-div-unique, 
fps-add_wf, 
mul_over_plus_fps, 
mul_zero_fps, 
mul_comm_fps, 
mul_ac_1_fps, 
fps-zero_wf, 
fps-mul-comm, 
mul_one_fps, 
abmonoid_comm_fps, 
mul_assoc_fps, 
abmonoid_ac_1_fps, 
iabgrp_op_inv_assoc_fps, 
mon_ident_fps, 
fps-mul-div, 
fps-sub_wf, 
fps-mul-assoc, 
mul_over_minus_fps
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
hypothesis, 
equalityIstype, 
inhabitedIsType, 
hypothesisEquality, 
applyEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
sqequalRule, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
universeIsType, 
instantiate, 
universeEquality, 
Error :memTop, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
lambdaEquality_alt, 
imageElimination, 
productElimination, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
independent_functionElimination, 
hyp_replacement, 
applyLambdaEquality, 
lambdaEquality, 
independent_pairFormation, 
dependent_functionElimination
Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[f,g:PowerSeries(X;r)].  \mforall{}[x:X].  \mforall{}[u:|r|].
        d(f\mdiv{}g)/dx  =  (((df/dx*g)-(f*dg/dx))\mdiv{}(g*g))  supposing  (g[\{\}]  *  u)  =  1 
    supposing  valueall-type(X)
Date html generated:
2020_05_20-AM-09_07_22
Last ObjectModification:
2019_12_26-PM-04_07_10
Theory : power!series
Home
Index