Nuprl Lemma : fps-deriv-div

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[f,g:PowerSeries(X;r)]. ∀[x:X]. ∀[u:|r|].
    d(f÷g)/dx (((df/dx*g)-(f*dg/dx))÷(g*g)) ∈ PowerSeries(X;r) supposing (g[{}] u) 1 ∈ |r| 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-deriv: df/dx fps-div: (f÷g) fps-mul: (f*g) fps-sub: (f-g) fps-coeff: f[b] power-series: PowerSeries(X;r) empty-bag: {} deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] infix_ap: y universe: Type equal: t ∈ T crng: CRng rng_one: 1 rng_times: * rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a infix_ap: y crng: CRng rng: Rng true: True squash: T prop: and: P ∧ Q subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q cand: c∧ B all: x:A. B[x] fps-sub: (f-g)
Lemmas referenced :  rng_times_wf fps-coeff_wf empty-bag_wf rng_one_wf rng_car_wf power-series_wf crng_wf deq_wf valueall-type_wf istype-universe fps-mul-coeff0 rng_zero_wf rng_plus_wf equal_wf squash_wf true_wf rng_times_over_plus subtype_rel_self rng_times_zero rng_times_assoc rng_plus_zero iff_weakening_equal crng_times_ac_1 rng_times_one fps-one_wf fps-div_wf fps-deriv-mul fps-deriv_wf fps-div-property fps-deriv-one fps-mul_wf fps-neg_wf fps-div-unique fps-add_wf mul_over_plus_fps mul_zero_fps mul_comm_fps mul_ac_1_fps fps-zero_wf fps-mul-comm mul_one_fps abmonoid_comm_fps mul_assoc_fps abmonoid_ac_1_fps iabgrp_op_inv_assoc_fps mon_ident_fps fps-mul-div fps-sub_wf fps-mul-assoc mul_over_minus_fps
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut hypothesis equalityIstype inhabitedIsType hypothesisEquality applyEquality extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename sqequalRule isect_memberEquality_alt axiomEquality isectIsTypeImplies universeIsType instantiate universeEquality Error :memTop,  because_Cache equalityTransitivity equalitySymmetry natural_numberEquality lambdaEquality_alt imageElimination productElimination imageMemberEquality baseClosed independent_isectElimination independent_functionElimination hyp_replacement applyLambdaEquality lambdaEquality independent_pairFormation dependent_functionElimination

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[f,g:PowerSeries(X;r)].  \mforall{}[x:X].  \mforall{}[u:|r|].
        d(f\mdiv{}g)/dx  =  (((df/dx*g)-(f*dg/dx))\mdiv{}(g*g))  supposing  (g[\{\}]  *  u)  =  1 
    supposing  valueall-type(X)



Date html generated: 2020_05_20-AM-09_07_22
Last ObjectModification: 2019_12_26-PM-04_07_10

Theory : power!series


Home Index