Nuprl Lemma : fps-mul-div
∀[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[f,g,h:PowerSeries(X;r)]. ∀[x:|r|].
    (h*(f÷g)) = ((h*f)÷g) ∈ PowerSeries(X;r) supposing (g[{}] * x) = 1 ∈ |r| 
  supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-div: (f÷g)
, 
fps-mul: (f*g)
, 
fps-coeff: f[b]
, 
power-series: PowerSeries(X;r)
, 
empty-bag: {}
, 
deq: EqDecider(T)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
universe: Type
, 
equal: s = t ∈ T
, 
crng: CRng
, 
rng_one: 1
, 
rng_times: *
, 
rng_car: |r|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
prop: ℙ
, 
crng: CRng
, 
rng: Rng
, 
infix_ap: x f y
, 
true: True
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
fps-div-unique, 
fps-mul_wf, 
fps-div_wf, 
equal_wf, 
rng_car_wf, 
rng_times_wf, 
fps-coeff_wf, 
empty-bag_wf, 
rng_one_wf, 
power-series_wf, 
crng_wf, 
deq_wf, 
valueall-type_wf, 
fps-mul-comm, 
iff_weakening_equal, 
squash_wf, 
true_wf, 
subtype_rel_self, 
fps-mul-assoc, 
fps-div-property
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
dependent_functionElimination, 
independent_pairFormation, 
setElimination, 
rename, 
applyEquality, 
because_Cache, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
natural_numberEquality, 
lambdaEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
instantiate
Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[f,g,h:PowerSeries(X;r)].  \mforall{}[x:|r|].
        (h*(f\mdiv{}g))  =  ((h*f)\mdiv{}g)  supposing  (g[\{\}]  *  x)  =  1 
    supposing  valueall-type(X)
Date html generated:
2018_05_21-PM-09_55_43
Last ObjectModification:
2018_05_19-PM-04_13_35
Theory : power!series
Home
Index