Nuprl Lemma : fps-mul-div

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[f,g,h:PowerSeries(X;r)]. ∀[x:|r|].
    (h*(f÷g)) ((h*f)÷g) ∈ PowerSeries(X;r) supposing (g[{}] x) 1 ∈ |r| 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-div: (f÷g) fps-mul: (f*g) fps-coeff: f[b] power-series: PowerSeries(X;r) empty-bag: {} deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] infix_ap: y universe: Type equal: t ∈ T crng: CRng rng_one: 1 rng_times: * rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] and: P ∧ Q cand: c∧ B prop: crng: CRng rng: Rng infix_ap: y true: True squash: T subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  fps-div-unique fps-mul_wf fps-div_wf equal_wf rng_car_wf rng_times_wf fps-coeff_wf empty-bag_wf rng_one_wf power-series_wf crng_wf deq_wf valueall-type_wf fps-mul-comm iff_weakening_equal squash_wf true_wf subtype_rel_self fps-mul-assoc fps-div-property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis dependent_functionElimination independent_pairFormation setElimination rename applyEquality because_Cache sqequalRule isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry universeEquality natural_numberEquality lambdaEquality imageElimination imageMemberEquality baseClosed productElimination independent_functionElimination instantiate

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[f,g,h:PowerSeries(X;r)].  \mforall{}[x:|r|].
        (h*(f\mdiv{}g))  =  ((h*f)\mdiv{}g)  supposing  (g[\{\}]  *  x)  =  1 
    supposing  valueall-type(X)



Date html generated: 2018_05_21-PM-09_55_43
Last ObjectModification: 2018_05_19-PM-04_13_35

Theory : power!series


Home Index