Nuprl Lemma : fps-div-unique

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[f,g:PowerSeries(X;r)]. ∀[x:|r|].
    ∀q:PowerSeries(X;r)
      (f÷g) ∈ PowerSeries(X;r) supposing ((g*q) f ∈ PowerSeries(X;r)) ∧ ((g[{}] x) 1 ∈ |r|) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-div: (f÷g) fps-mul: (f*g) fps-coeff: f[b] power-series: PowerSeries(X;r) empty-bag: {} deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] infix_ap: y all: x:A. B[x] and: P ∧ Q universe: Type equal: t ∈ T crng: CRng rng_one: 1 rng_times: * rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] and: P ∧ Q prop: crng: CRng rng: Rng infix_ap: y squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q fps-rng: fps-rng(r) rng_car: |r| pi1: fst(t) rng_plus: +r pi2: snd(t) rng_zero: 0 rng_minus: -r rng_times: * rng_one: 1 ring_p: IsRing(T;plus;zero;neg;times;one) monoid_p: IsMonoid(T;op;id) ident: Ident(T;op;id)
Lemmas referenced :  fps-div-property equal_wf power-series_wf fps-mul_wf rng_car_wf rng_times_wf fps-coeff_wf empty-bag_wf rng_one_wf crng_wf deq_wf valueall-type_wf squash_wf true_wf fps-div_wf fps-one_wf iff_weakening_equal fps-mul-assoc fps-mul-comm fps-rng_wf crng_properties rng_properties
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination lambdaFormation productElimination equalityTransitivity equalitySymmetry productEquality cumulativity setElimination rename applyEquality because_Cache sqequalRule isect_memberEquality lambdaEquality dependent_functionElimination axiomEquality universeEquality imageElimination imageMemberEquality baseClosed natural_numberEquality independent_functionElimination hyp_replacement applyLambdaEquality

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[f,g:PowerSeries(X;r)].  \mforall{}[x:|r|].
        \mforall{}q:PowerSeries(X;r).  q  =  (f\mdiv{}g)  supposing  ((g*q)  =  f)  \mwedge{}  ((g[\{\}]  *  x)  =  1) 
    supposing  valueall-type(X)



Date html generated: 2018_05_21-PM-09_55_41
Last ObjectModification: 2017_07_26-PM-06_32_46

Theory : power!series


Home Index