Nuprl Lemma : fps-deriv-mul

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[f,g:PowerSeries(X;r)]. ∀[x:X].
    (d(f*g)/dx ((f*dg/dx)+(df/dx*g)) ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-deriv: df/dx fps-mul: (f*g) fps-add: (f+g) power-series: PowerSeries(X;r) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] and: P ∧ Q cand: c∧ B all: x:A. B[x] crng: CRng rng: Rng implies:  Q compose: g squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q nat: bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False top: Top decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) nequal: a ≠ b ∈  infix_ap: y ge: i ≥  le: A ≤ B fps-deriv: df/dx fps-add: (f+g)
Lemmas referenced :  fps-linear-ucont-equal fps-deriv_wf fps-mul_wf power-series_wf fps-add_wf rng_car_wf bag_wf crng_wf deq_wf valueall-type_wf fps-ucont-composition fps-deriv-ucont fps-mul-ucont fps-add-ucont-general equal_wf squash_wf true_wf fps-deriv-add subtype_rel_self iff_weakening_equal mul_over_plus_fps mul_comm_fps mon_assoc_fps abmonoid_ac_1_fps fps-scalar-mul_wf fps-deriv-scalar-mul fps-scalar-mul-mul fps-scalar-mul-add fps-single_wf fps-ucont_wf fps-mul-comm abmonoid_comm_fps bag-append_wf int-to-ring_wf bag-count_wf nat_wf bag-drop_wf fps-mul-single fps-deriv-single eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int bag-drop-append int_subtype_base int-to-ring-zero mon_ident_fps rng_wf fps-scalar-mul-zero bag-count-append decidable__equal_int full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermAdd_wf itermVar_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__lt assert_wf bnot_wf not_wf equal-wf-T-base intformless_wf int_formula_prop_less_lemma bool_cases iff_transitivity iff_weakening_uiff assert_of_bnot bag-append-comm rng_plus_wf fps-scalar-mul-rng-add int-to-ring-add set_subtype_base le_wf decidable__le nat_properties intformle_wf int_formula_prop_le_lemma fps-zero_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache independent_isectElimination hypothesis hypothesisEquality sqequalRule lambdaEquality independent_pairFormation lambdaFormation setElimination rename isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry universeEquality dependent_functionElimination independent_functionElimination applyEquality imageElimination natural_numberEquality imageMemberEquality baseClosed instantiate productElimination hyp_replacement functionEquality unionElimination equalityElimination dependent_pairFormation promote_hyp cumulativity voidElimination intEquality voidEquality approximateComputation int_eqEquality applyLambdaEquality impliesFunctionality dependent_set_memberEquality addEquality

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[f,g:PowerSeries(X;r)].  \mforall{}[x:X].
        (d(f*g)/dx  =  ((f*dg/dx)+(df/dx*g))) 
    supposing  valueall-type(X)



Date html generated: 2018_05_21-PM-10_16_51
Last ObjectModification: 2018_05_19-PM-04_18_58

Theory : power!series


Home Index