Nuprl Lemma : fps-deriv-mul
∀[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[f,g:PowerSeries(X;r)]. ∀[x:X].
    (d(f*g)/dx = ((f*dg/dx)+(df/dx*g)) ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-deriv: df/dx
, 
fps-mul: (f*g)
, 
fps-add: (f+g)
, 
power-series: PowerSeries(X;r)
, 
deq: EqDecider(T)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
crng: CRng
, 
rng: Rng
, 
implies: P 
⇒ Q
, 
compose: f o g
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
nat: ℕ
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
top: Top
, 
decidable: Dec(P)
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
nequal: a ≠ b ∈ T 
, 
infix_ap: x f y
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
fps-deriv: df/dx
, 
fps-add: (f+g)
Lemmas referenced : 
fps-linear-ucont-equal, 
fps-deriv_wf, 
fps-mul_wf, 
power-series_wf, 
fps-add_wf, 
rng_car_wf, 
bag_wf, 
crng_wf, 
deq_wf, 
valueall-type_wf, 
fps-ucont-composition, 
fps-deriv-ucont, 
fps-mul-ucont, 
fps-add-ucont-general, 
equal_wf, 
squash_wf, 
true_wf, 
fps-deriv-add, 
subtype_rel_self, 
iff_weakening_equal, 
mul_over_plus_fps, 
mul_comm_fps, 
mon_assoc_fps, 
abmonoid_ac_1_fps, 
fps-scalar-mul_wf, 
fps-deriv-scalar-mul, 
fps-scalar-mul-mul, 
fps-scalar-mul-add, 
fps-single_wf, 
fps-ucont_wf, 
fps-mul-comm, 
abmonoid_comm_fps, 
bag-append_wf, 
int-to-ring_wf, 
bag-count_wf, 
nat_wf, 
bag-drop_wf, 
fps-mul-single, 
fps-deriv-single, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
bag-drop-append, 
int_subtype_base, 
int-to-ring-zero, 
mon_ident_fps, 
rng_wf, 
fps-scalar-mul-zero, 
bag-count-append, 
decidable__equal_int, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermAdd_wf, 
itermVar_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
decidable__lt, 
assert_wf, 
bnot_wf, 
not_wf, 
equal-wf-T-base, 
intformless_wf, 
int_formula_prop_less_lemma, 
bool_cases, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
bag-append-comm, 
rng_plus_wf, 
fps-scalar-mul-rng-add, 
int-to-ring-add, 
set_subtype_base, 
le_wf, 
decidable__le, 
nat_properties, 
intformle_wf, 
int_formula_prop_le_lemma, 
fps-zero_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
independent_pairFormation, 
lambdaFormation, 
setElimination, 
rename, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
dependent_functionElimination, 
independent_functionElimination, 
applyEquality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
productElimination, 
hyp_replacement, 
functionEquality, 
unionElimination, 
equalityElimination, 
dependent_pairFormation, 
promote_hyp, 
cumulativity, 
voidElimination, 
intEquality, 
voidEquality, 
approximateComputation, 
int_eqEquality, 
applyLambdaEquality, 
impliesFunctionality, 
dependent_set_memberEquality, 
addEquality
Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[f,g:PowerSeries(X;r)].  \mforall{}[x:X].
        (d(f*g)/dx  =  ((f*dg/dx)+(df/dx*g))) 
    supposing  valueall-type(X)
Date html generated:
2018_05_21-PM-10_16_51
Last ObjectModification:
2018_05_19-PM-04_18_58
Theory : power!series
Home
Index