Nuprl Lemma : fps-add-ucont-general
∀[X:Type]. ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[F,G:PowerSeries(X;r) ⟶ PowerSeries(X;r)].
  (fps-ucont(X;eq;r;f.F[f]) ⇒ fps-ucont(X;eq;r;f.G[f]) ⇒ fps-ucont(X;eq;r;f.(F[f]+G[f])))
Proof
Definitions occuring in Statement : 
fps-ucont: fps-ucont(X;eq;r;f.G[f]), 
fps-add: (f+g), 
power-series: PowerSeries(X;r), 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
fps-ucont: fps-ucont(X;eq;r;f.G[f]), 
all: ∀x:A. B[x], 
member: t ∈ T, 
exists: ∃x:A. B[x], 
fps-coeff: f[b], 
fps-add: (f+g), 
rng_plus: +r, 
pi1: fst(t), 
pi2: snd(t), 
infix_ap: x f y, 
top: Top, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
crng: CRng, 
rng: Rng, 
so_apply: x[s], 
true: True, 
squash: ↓T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
fps-restrict: fps-restrict(eq;r;f;d), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
iff: P ⇐⇒ Q, 
ifthenelse: if b then t else f fi , 
power-series: PowerSeries(X;r), 
bfalse: ff, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
rev_implies: P ⇐ Q, 
subtype_rel: A ⊆r B, 
sub-bag: sub-bag(T;as;bs)
Lemmas referenced : 
bag-append_wf, 
top_wf, 
power-series_wf, 
all_wf, 
equal_wf, 
rng_car_wf, 
fps-coeff_wf, 
fps-add_wf, 
fps-restrict_wf, 
bag_wf, 
fps-ucont_wf, 
crng_wf, 
deq_wf, 
rng_plus_wf, 
fps-ext, 
deq-sub-bag_wf, 
bool_wf, 
eqtt_to_assert, 
assert-deq-sub-bag, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
sub-bag_wf, 
rng_zero_wf, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
bag-append-assoc2, 
bag-append-comm
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
dependent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesis, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaEquality, 
setElimination, 
rename, 
applyEquality, 
functionEquality, 
universeEquality, 
because_Cache, 
natural_numberEquality, 
imageElimination, 
independent_isectElimination, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
promote_hyp, 
instantiate, 
cumulativity, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[X:Type].  \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[F,G:PowerSeries(X;r)  {}\mrightarrow{}  PowerSeries(X;r)].
    (fps-ucont(X;eq;r;f.F[f])  {}\mRightarrow{}  fps-ucont(X;eq;r;f.G[f])  {}\mRightarrow{}  fps-ucont(X;eq;r;f.(F[f]+G[f])))
Date html generated:
2018_05_21-PM-10_11_06
Last ObjectModification:
2018_05_19-PM-04_15_35
Theory : power!series
Home
Index