Nuprl Lemma : fps-deriv-single

[X:Type]. ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[b:bag(X)]. ∀[x:X].
  (d<b>/dx (int-to-ring(r;(#x in b)))*<bag-drop(eq;b;x)> ∈ PowerSeries(X;r))


Proof




Definitions occuring in Statement :  fps-deriv: df/dx fps-scalar-mul: (c)*f fps-single: <c> power-series: PowerSeries(X;r) bag-drop: bag-drop(eq;bs;a) bag-count: (#x in bs) bag: bag(T) deq: EqDecider(T) uall: [x:A]. B[x] universe: Type equal: t ∈ T int-to-ring: int-to-ring(r;n) crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T crng: CRng subtype_rel: A ⊆B nat: uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] fps-single: <c> fps-scalar-mul: (c)*f fps-coeff: f[b] fps-deriv: df/dx implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A infix_ap: y rng: Rng squash: T true: True iff: ⇐⇒ Q rev_implies:  Q top: Top rev_uimplies: rev_uimplies(P;Q) sq_or: a ↓∨ b ringeq_int_terms: t1 ≡ t2 so_lambda: λ2x.t[x] so_apply: x[s] decidable: Dec(P) ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced :  fps-ext fps-deriv_wf fps-single_wf fps-scalar-mul_wf int-to-ring_wf bag-count_wf nat_wf bag-drop_wf bag-drop-property bag-eq_wf cons-bag_wf bool_wf eqtt_to_assert assert-bag-eq eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot bag_wf crng_wf deq_wf rng_times_wf squash_wf true_wf rng_wf rng_one_wf subtype_rel_self iff_weakening_equal cons-bag-as-append bag-count-append single-bag_wf add-commutes add_functionality_wrt_eq bag-count-member-no-repeats bag-member-single bag-single-no-repeats bag-append-cancel bag-member_wf bag-member-cons rng_zero_wf itermAdd_wf itermMultiply_wf itermVar_wf itermConstant_wf itermMinus_wf ringeq-iff-rsub-is-0 ring_polynomial_null ring_term_value_add_lemma ring_term_value_mul_lemma ring_term_value_var_lemma ring_term_value_const_lemma int-to-ring-zero ring_term_value_minus_lemma bag-append_wf not_wf or_functionality_wrt_iff set_subtype_base le_wf int_subtype_base decidable__le nat_properties full-omega-unsat intformand_wf intformle_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf bag-count-is-zero rng_car_wf rng_times_zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality hypothesis setElimination rename applyEquality lambdaEquality sqequalRule productElimination independent_isectElimination lambdaFormation dependent_functionElimination unionElimination equalityElimination equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp instantiate cumulativity independent_functionElimination voidElimination isect_memberEquality axiomEquality universeEquality imageElimination intEquality natural_numberEquality imageMemberEquality baseClosed addEquality voidEquality inlFormation approximateComputation int_eqEquality productEquality independent_pairFormation applyLambdaEquality dependent_set_memberEquality

Latex:
\mforall{}[X:Type].  \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[b:bag(X)].  \mforall{}[x:X].
    (d<b>/dx  =  (int-to-ring(r;(\#x  in  b)))*<bag-drop(eq;b;x)>)



Date html generated: 2018_05_21-PM-10_16_26
Last ObjectModification: 2018_05_19-PM-04_18_06

Theory : power!series


Home Index