Nuprl Lemma : fps-deriv-single
∀[X:Type]. ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[b:bag(X)]. ∀[x:X].
  (d<b>/dx = (int-to-ring(r;(#x in b)))*<bag-drop(eq;b;x)> ∈ PowerSeries(X;r))
Proof
Definitions occuring in Statement : 
fps-deriv: df/dx, 
fps-scalar-mul: (c)*f, 
fps-single: <c>, 
power-series: PowerSeries(X;r), 
bag-drop: bag-drop(eq;bs;a), 
bag-count: (#x in bs), 
bag: bag(T), 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
universe: Type, 
equal: s = t ∈ T, 
int-to-ring: int-to-ring(r;n), 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
crng: CRng, 
subtype_rel: A ⊆r B, 
nat: ℕ, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
fps-single: <c>, 
fps-scalar-mul: (c)*f, 
fps-coeff: f[b], 
fps-deriv: df/dx, 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
infix_ap: x f y, 
rng: Rng, 
squash: ↓T, 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
top: Top, 
rev_uimplies: rev_uimplies(P;Q), 
sq_or: a ↓∨ b, 
ringeq_int_terms: t1 ≡ t2, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
decidable: Dec(P), 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced : 
fps-ext, 
fps-deriv_wf, 
fps-single_wf, 
fps-scalar-mul_wf, 
int-to-ring_wf, 
bag-count_wf, 
nat_wf, 
bag-drop_wf, 
bag-drop-property, 
bag-eq_wf, 
cons-bag_wf, 
bool_wf, 
eqtt_to_assert, 
assert-bag-eq, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
bag_wf, 
crng_wf, 
deq_wf, 
rng_times_wf, 
squash_wf, 
true_wf, 
rng_wf, 
rng_one_wf, 
subtype_rel_self, 
iff_weakening_equal, 
cons-bag-as-append, 
bag-count-append, 
single-bag_wf, 
add-commutes, 
add_functionality_wrt_eq, 
bag-count-member-no-repeats, 
bag-member-single, 
bag-single-no-repeats, 
bag-append-cancel, 
bag-member_wf, 
bag-member-cons, 
rng_zero_wf, 
itermAdd_wf, 
itermMultiply_wf, 
itermVar_wf, 
itermConstant_wf, 
itermMinus_wf, 
ringeq-iff-rsub-is-0, 
ring_polynomial_null, 
ring_term_value_add_lemma, 
ring_term_value_mul_lemma, 
ring_term_value_var_lemma, 
ring_term_value_const_lemma, 
int-to-ring-zero, 
ring_term_value_minus_lemma, 
bag-append_wf, 
not_wf, 
or_functionality_wrt_iff, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
decidable__le, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
intformnot_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_wf, 
bag-count-is-zero, 
rng_car_wf, 
rng_times_zero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
productElimination, 
independent_isectElimination, 
lambdaFormation, 
dependent_functionElimination, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
isect_memberEquality, 
axiomEquality, 
universeEquality, 
imageElimination, 
intEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
addEquality, 
voidEquality, 
inlFormation, 
approximateComputation, 
int_eqEquality, 
productEquality, 
independent_pairFormation, 
applyLambdaEquality, 
dependent_set_memberEquality
Latex:
\mforall{}[X:Type].  \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[b:bag(X)].  \mforall{}[x:X].
    (d<b>/dx  =  (int-to-ring(r;(\#x  in  b)))*<bag-drop(eq;b;x)>)
Date html generated:
2018_05_21-PM-10_16_26
Last ObjectModification:
2018_05_19-PM-04_18_06
Theory : power!series
Home
Index