Nuprl Lemma : bag-count-member-no-repeats
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[bs:bag(T)]. ∀[x:T].  ((#x in bs) = 1 ∈ ℤ) supposing (bag-no-repeats(T;bs) and x ↓∈ bs)
Proof
Definitions occuring in Statement : 
bag-count: (#x in bs)
, 
bag-member: x ↓∈ bs
, 
bag-no-repeats: bag-no-repeats(T;bs)
, 
bag: bag(T)
, 
deq: EqDecider(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
rev_uimplies: rev_uimplies(P;Q)
, 
prop: ℙ
Lemmas referenced : 
bag-no-repeats-count, 
bag-no-repeats_wf, 
bag-member_wf, 
bag_wf, 
deq_wf, 
bag-member-count
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
introduction, 
independent_isectElimination, 
independent_pairFormation, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[bs:bag(T)].  \mforall{}[x:T].
    ((\#x  in  bs)  =  1)  supposing  (bag-no-repeats(T;bs)  and  x  \mdownarrow{}\mmember{}  bs)
Date html generated:
2016_05_15-PM-07_59_26
Last ObjectModification:
2015_12_27-PM-04_16_25
Theory : bags_2
Home
Index