Nuprl Lemma : fps-deriv_wf

[X:Type]. ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[f:PowerSeries(X;r)]. ∀[x:X].  (df/dx ∈ PowerSeries(X;r))


Proof




Definitions occuring in Statement :  fps-deriv: df/dx power-series: PowerSeries(X;r) deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T universe: Type crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fps-deriv: df/dx infix_ap: y crng: CRng rng: Rng subtype_rel: A ⊆B nat: power-series: PowerSeries(X;r)
Lemmas referenced :  rng_times_wf int-to-ring_wf bag-count_wf nat_wf cons-bag_wf bag_wf subtype_rel_self power-series_wf crng_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality applyEquality extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis addEquality natural_numberEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[f:PowerSeries(X;r)].  \mforall{}[x:X].    (df/dx  \mmember{}  PowerSeries(X;r))



Date html generated: 2018_05_21-PM-10_16_01
Last ObjectModification: 2018_05_19-PM-04_17_09

Theory : power!series


Home Index