Nuprl Lemma : fps-scalar-mul-rng-add
∀[X:Type]. ∀[r:CRng]. ∀[c1,c2:|r|]. ∀[f:PowerSeries(X;r)].  ((c1 +r c2)*f = ((c1)*f+(c2)*f) ∈ PowerSeries(X;r))
Proof
Definitions occuring in Statement : 
fps-scalar-mul: (c)*f
, 
fps-add: (f+g)
, 
power-series: PowerSeries(X;r)
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
universe: Type
, 
equal: s = t ∈ T
, 
crng: CRng
, 
rng_plus: +r
, 
rng_car: |r|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
infix_ap: x f y
, 
crng: CRng
, 
rng: Rng
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
power-series: PowerSeries(X;r)
, 
true: True
, 
fps-scalar-mul: (c)*f
, 
fps-add: (f+g)
, 
fps-coeff: f[b]
, 
squash: ↓T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
fps-ext, 
fps-scalar-mul_wf, 
rng_plus_wf, 
fps-add_wf, 
bag_wf, 
power-series_wf, 
rng_car_wf, 
crng_wf, 
rng_times_wf, 
infix_ap_wf, 
equal_wf, 
squash_wf, 
true_wf, 
rng_times_over_plus, 
crng_times_comm, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
cumulativity, 
applyEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
productElimination, 
independent_isectElimination, 
lambdaFormation, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
universeEquality, 
natural_numberEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination
Latex:
\mforall{}[X:Type].  \mforall{}[r:CRng].  \mforall{}[c1,c2:|r|].  \mforall{}[f:PowerSeries(X;r)].    ((c1  +r  c2)*f  =  ((c1)*f+(c2)*f))
Date html generated:
2018_05_21-PM-09_57_29
Last ObjectModification:
2017_07_26-PM-06_33_23
Theory : power!series
Home
Index