Nuprl Lemma : fps-deriv-ucont

[X:Type]. ∀[eq:EqDecider(X)]. ∀[r:CRng].  ∀x:X. fps-ucont(X;eq;r;f.df/dx)


Proof




Definitions occuring in Statement :  fps-deriv: df/dx fps-ucont: fps-ucont(X;eq;r;f.G[f]) deq: EqDecider(T) uall: [x:A]. B[x] all: x:A. B[x] universe: Type crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] fps-ucont: fps-ucont(X;eq;r;f.G[f]) exists: x:A. B[x] member: t ∈ T fps-restrict: fps-restrict(eq;r;f;d) fps-deriv: df/dx fps-coeff: f[b] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a iff: ⇐⇒ Q ifthenelse: if then else fi  infix_ap: y crng: CRng rng: Rng subtype_rel: A ⊆B nat: power-series: PowerSeries(X;r) bfalse: ff prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  cons-bag_wf deq-sub-bag_wf bool_wf eqtt_to_assert assert-deq-sub-bag rng_times_wf int-to-ring_wf bag-count_wf nat_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot sub-bag_wf sub-bag_weakening power-series_wf all_wf rng_car_wf fps-coeff_wf fps-deriv_wf fps-restrict_wf bag_wf crng_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation dependent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination because_Cache dependent_functionElimination independent_functionElimination applyEquality setElimination rename addEquality lambdaEquality natural_numberEquality promote_hyp instantiate cumulativity voidElimination universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].    \mforall{}x:X.  fps-ucont(X;eq;r;f.df/dx)



Date html generated: 2018_05_21-PM-10_16_05
Last ObjectModification: 2018_05_19-PM-04_17_17

Theory : power!series


Home Index