Nuprl Lemma : fps-deriv-scalar-mul

[X:Type]. ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[f:PowerSeries(X;r)]. ∀[c:|r|]. ∀[x:X].
  (d(c)*f/dx (c)*df/dx ∈ PowerSeries(X;r))


Proof




Definitions occuring in Statement :  fps-deriv: df/dx fps-scalar-mul: (c)*f power-series: PowerSeries(X;r) deq: EqDecider(T) uall: [x:A]. B[x] universe: Type equal: t ∈ T crng: CRng rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] fps-deriv: df/dx fps-scalar-mul: (c)*f fps-coeff: f[b] crng: CRng subtype_rel: A ⊆B nat: power-series: PowerSeries(X;r) rng: Rng
Lemmas referenced :  fps-ext fps-deriv_wf fps-scalar-mul_wf crng_times_ac_1 int-to-ring_wf bag-count_wf nat_wf cons-bag_wf bag_wf rng_car_wf power-series_wf crng_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality hypothesis productElimination independent_isectElimination lambdaFormation sqequalRule setElimination rename addEquality applyEquality lambdaEquality natural_numberEquality isect_memberEquality axiomEquality universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[f:PowerSeries(X;r)].  \mforall{}[c:|r|].  \mforall{}[x:X].
    (d(c)*f/dx  =  (c)*df/dx)



Date html generated: 2018_05_21-PM-10_16_11
Last ObjectModification: 2018_05_19-PM-04_17_31

Theory : power!series


Home Index