Nuprl Lemma : fps-deriv-scalar-mul
∀[X:Type]. ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[f:PowerSeries(X;r)]. ∀[c:|r|]. ∀[x:X].
  (d(c)*f/dx = (c)*df/dx ∈ PowerSeries(X;r))
Proof
Definitions occuring in Statement : 
fps-deriv: df/dx
, 
fps-scalar-mul: (c)*f
, 
power-series: PowerSeries(X;r)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
crng: CRng
, 
rng_car: |r|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
fps-deriv: df/dx
, 
fps-scalar-mul: (c)*f
, 
fps-coeff: f[b]
, 
crng: CRng
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
power-series: PowerSeries(X;r)
, 
rng: Rng
Lemmas referenced : 
fps-ext, 
fps-deriv_wf, 
fps-scalar-mul_wf, 
crng_times_ac_1, 
int-to-ring_wf, 
bag-count_wf, 
nat_wf, 
cons-bag_wf, 
bag_wf, 
rng_car_wf, 
power-series_wf, 
crng_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
lambdaFormation, 
sqequalRule, 
setElimination, 
rename, 
addEquality, 
applyEquality, 
lambdaEquality, 
natural_numberEquality, 
isect_memberEquality, 
axiomEquality, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[f:PowerSeries(X;r)].  \mforall{}[c:|r|].  \mforall{}[x:X].
    (d(c)*f/dx  =  (c)*df/dx)
Date html generated:
2018_05_21-PM-10_16_11
Last ObjectModification:
2018_05_19-PM-04_17_31
Theory : power!series
Home
Index