Nuprl Lemma : fps-scalar-mul-mul

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[c:|r|]. ∀[f,g:PowerSeries(X;r)].
    (((c)*(f*g) ((c)*f*g) ∈ PowerSeries(X;r)) ∧ ((c)*(f*g) (f*(c)*g) ∈ PowerSeries(X;r))) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-scalar-mul: (c)*f fps-mul: (f*g) power-series: PowerSeries(X;r) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q universe: Type equal: t ∈ T crng: CRng rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q all: x:A. B[x] cand: c∧ B dist_1op_2op_lr: Dist1op2opLR(A;1op;2op) infix_ap: y
Lemmas referenced :  fps-scalar-mul-property power-series_wf crng_wf deq_wf valueall-type_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination productElimination dependent_functionElimination sqequalRule independent_pairFormation because_Cache independent_pairEquality axiomEquality isect_memberEquality universeEquality

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[c:|r|].  \mforall{}[f,g:PowerSeries(X;r)].
        (((c)*(f*g)  =  ((c)*f*g))  \mwedge{}  ((c)*(f*g)  =  (f*(c)*g))) 
    supposing  valueall-type(X)



Date html generated: 2018_05_21-PM-09_57_31
Last ObjectModification: 2018_05_19-PM-04_13_41

Theory : power!series


Home Index