Nuprl Lemma : fps-scalar-mul-mul
∀[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[c:|r|]. ∀[f,g:PowerSeries(X;r)].
    (((c)*(f*g) = ((c)*f*g) ∈ PowerSeries(X;r)) ∧ ((c)*(f*g) = (f*(c)*g) ∈ PowerSeries(X;r))) 
  supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-scalar-mul: (c)*f
, 
fps-mul: (f*g)
, 
power-series: PowerSeries(X;r)
, 
deq: EqDecider(T)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
universe: Type
, 
equal: s = t ∈ T
, 
crng: CRng
, 
rng_car: |r|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
cand: A c∧ B
, 
dist_1op_2op_lr: Dist1op2opLR(A;1op;2op)
, 
infix_ap: x f y
Lemmas referenced : 
fps-scalar-mul-property, 
power-series_wf, 
crng_wf, 
deq_wf, 
valueall-type_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
productElimination, 
dependent_functionElimination, 
sqequalRule, 
independent_pairFormation, 
because_Cache, 
independent_pairEquality, 
axiomEquality, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[c:|r|].  \mforall{}[f,g:PowerSeries(X;r)].
        (((c)*(f*g)  =  ((c)*f*g))  \mwedge{}  ((c)*(f*g)  =  (f*(c)*g))) 
    supposing  valueall-type(X)
Date html generated:
2018_05_21-PM-09_57_31
Last ObjectModification:
2018_05_19-PM-04_13_41
Theory : power!series
Home
Index