Nuprl Lemma : fps-scalar-mul-add

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[c:|r|]. ∀[f,g:PowerSeries(X;r)].  ((c)*(f+g) ((c)*f+(c)*g) ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-scalar-mul: (c)*f fps-add: (f+g) power-series: PowerSeries(X;r) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T crng: CRng rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f) infix_ap: y crng: CRng rng: Rng
Lemmas referenced :  fps-scalar-mul-property power-series_wf rng_car_wf crng_wf deq_wf valueall-type_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination productElimination sqequalRule isect_memberEquality axiomEquality because_Cache setElimination rename universeEquality

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[c:|r|].  \mforall{}[f,g:PowerSeries(X;r)].    ((c)*(f+g)  =  ((c)*f+(c)*g)) 
    supposing  valueall-type(X)



Date html generated: 2018_05_21-PM-09_57_33
Last ObjectModification: 2018_05_19-PM-04_13_48

Theory : power!series


Home Index