Nuprl Lemma : iabgrp_op_inv_assoc_fps
∀[X:Type]. ∀[r:CRng]. ∀[a,b:PowerSeries(X;r)].
  (((a+(-(a)+b)) = b ∈ PowerSeries(X;r)) ∧ ((-(a)+(a+b)) = b ∈ PowerSeries(X;r)))
Proof
Definitions occuring in Statement : 
fps-neg: -(f)
, 
fps-add: (f+g)
, 
power-series: PowerSeries(X;r)
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
universe: Type
, 
equal: s = t ∈ T
, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
cand: A c∧ B
Lemmas referenced : 
neg_assoc_fps, 
power-series_wf, 
crng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
hypothesis, 
independent_pairFormation, 
because_Cache, 
sqequalRule, 
independent_pairEquality, 
axiomEquality, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[r:CRng].  \mforall{}[a,b:PowerSeries(X;r)].    (((a+(-(a)+b))  =  b)  \mwedge{}  ((-(a)+(a+b))  =  b))
Date html generated:
2016_05_15-PM-09_50_01
Last ObjectModification:
2015_12_27-PM-04_39_36
Theory : power!series
Home
Index