Nuprl Lemma : iabgrp_op_inv_assoc_fps

[X:Type]. ∀[r:CRng]. ∀[a,b:PowerSeries(X;r)].
  (((a+(-(a)+b)) b ∈ PowerSeries(X;r)) ∧ ((-(a)+(a+b)) b ∈ PowerSeries(X;r)))


Proof




Definitions occuring in Statement :  fps-neg: -(f) fps-add: (f+g) power-series: PowerSeries(X;r) uall: [x:A]. B[x] and: P ∧ Q universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B
Lemmas referenced :  neg_assoc_fps power-series_wf crng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination hypothesis independent_pairFormation because_Cache sqequalRule independent_pairEquality axiomEquality isect_memberEquality universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[r:CRng].  \mforall{}[a,b:PowerSeries(X;r)].    (((a+(-(a)+b))  =  b)  \mwedge{}  ((-(a)+(a+b))  =  b))



Date html generated: 2016_05_15-PM-09_50_01
Last ObjectModification: 2015_12_27-PM-04_39_36

Theory : power!series


Home Index