Nuprl Lemma : neg_assoc_fps

[X:Type]. ∀[r:CRng]. ∀[a,b:PowerSeries(X;r)].
  (((a+(-(a)+b)) b ∈ PowerSeries(X;r)) ∧ ((-(a)+(a+b)) b ∈ PowerSeries(X;r)))


Proof




Definitions occuring in Statement :  fps-neg: -(f) fps-add: (f+g) power-series: PowerSeries(X;r) uall: [x:A]. B[x] and: P ∧ Q universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B fps-neg: -(f) fps-add: (f+g) power-series: PowerSeries(X;r) fps-coeff: f[b] crng: CRng rng: Rng true: True squash: T prop: infix_ap: y subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  bag_wf power-series_wf crng_wf rng_car_wf rng_minus_wf equal_wf squash_wf true_wf rng_plus_inv_assoc iff_weakening_equal rng_plus_ac_1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule functionExtensionality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_pairFormation because_Cache productElimination independent_pairEquality axiomEquality cumulativity isect_memberEquality universeEquality setElimination rename applyEquality natural_numberEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed independent_isectElimination independent_functionElimination

Latex:
\mforall{}[X:Type].  \mforall{}[r:CRng].  \mforall{}[a,b:PowerSeries(X;r)].    (((a+(-(a)+b))  =  b)  \mwedge{}  ((-(a)+(a+b))  =  b))



Date html generated: 2018_05_21-PM-09_56_44
Last ObjectModification: 2017_07_26-PM-06_33_04

Theory : power!series


Home Index