Nuprl Lemma : fps-mul-coeff0
∀[eq:Top]. ∀[r:CRng]. ∀[f,g:Top].  ((f*g)[{}] ~ (f[{}] * g[{}]) +r 0)
Proof
Definitions occuring in Statement : 
fps-mul: (f*g), 
fps-coeff: f[b], 
empty-bag: {}, 
uall: ∀[x:A]. B[x], 
top: Top, 
infix_ap: x f y, 
sqequal: s ~ t, 
crng: CRng, 
rng_times: *, 
rng_zero: 0, 
rng_plus: +r
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
crng: CRng, 
rng: Rng, 
rng_sig: RngSig, 
fps-coeff: f[b], 
fps-mul: (f*g), 
bag-summation: Σ(x∈b). f[x], 
bag-accum: bag-accum(v,x.f[v; x];init;bs), 
list_accum: list_accum, 
bag-partitions: bag-partitions(eq;bs), 
callbyvalueall: callbyvalueall, 
evalall: evalall(t), 
bag-splits: bag-splits(b), 
list_ind: list_ind, 
empty-bag: {}, 
nil: [], 
it: ⋅, 
single-bag: {x}, 
cons: [a / b], 
bag-to-set: bag-to-set(eq;bs), 
bag-remove-repeats: bag-remove-repeats(eq;bs), 
list-to-set: list-to-set(eq;L), 
l-union: as ⋃ bs, 
reduce: reduce(f;k;as), 
insert: insert(a;L), 
eval_list: eval_list(t), 
ifthenelse: if b then t else f fi , 
deq-member: x ∈b L, 
bfalse: ff, 
rng_plus: +r, 
pi1: fst(t), 
pi2: snd(t), 
infix_ap: x f y, 
rng_times: *
Lemmas referenced : 
crng_properties, 
rng_properties, 
top_wf, 
crng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
productElimination, 
sqequalRule, 
sqequalAxiom, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[eq:Top].  \mforall{}[r:CRng].  \mforall{}[f,g:Top].    ((f*g)[\{\}]  \msim{}  (f[\{\}]  *  g[\{\}])  +r  0)
 Date html generated: 
2018_05_21-PM-09_54_56
 Last ObjectModification: 
2018_05_19-PM-04_13_13
Theory : power!series
Home
Index