Nuprl Lemma : fps-mul-coeff0

[eq:Top]. ∀[r:CRng]. ∀[f,g:Top].  ((f*g)[{}] (f[{}] g[{}]) +r 0)


Proof




Definitions occuring in Statement :  fps-mul: (f*g) fps-coeff: f[b] empty-bag: {} uall: [x:A]. B[x] top: Top infix_ap: y sqequal: t crng: CRng rng_times: * rng_zero: 0 rng_plus: +r
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T crng: CRng rng: Rng rng_sig: RngSig fps-coeff: f[b] fps-mul: (f*g) bag-summation: Σ(x∈b). f[x] bag-accum: bag-accum(v,x.f[v; x];init;bs) list_accum: list_accum bag-partitions: bag-partitions(eq;bs) callbyvalueall: callbyvalueall evalall: evalall(t) bag-splits: bag-splits(b) list_ind: list_ind empty-bag: {} nil: [] it: single-bag: {x} cons: [a b] bag-to-set: bag-to-set(eq;bs) bag-remove-repeats: bag-remove-repeats(eq;bs) list-to-set: list-to-set(eq;L) l-union: as ⋃ bs reduce: reduce(f;k;as) insert: insert(a;L) eval_list: eval_list(t) ifthenelse: if then else fi  deq-member: x ∈b L bfalse: ff rng_plus: +r pi1: fst(t) pi2: snd(t) infix_ap: y rng_times: *
Lemmas referenced :  crng_properties rng_properties top_wf crng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename productElimination sqequalRule sqequalAxiom isect_memberEquality because_Cache

Latex:
\mforall{}[eq:Top].  \mforall{}[r:CRng].  \mforall{}[f,g:Top].    ((f*g)[\{\}]  \msim{}  (f[\{\}]  *  g[\{\}])  +r  0)



Date html generated: 2018_05_21-PM-09_54_56
Last ObjectModification: 2018_05_19-PM-04_13_13

Theory : power!series


Home Index