Nuprl Lemma : fps-deriv-one

[X:Type]. ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[x:X].  (d1/dx 0 ∈ PowerSeries(X;r))


Proof




Definitions occuring in Statement :  fps-deriv: df/dx fps-one: 1 fps-zero: 0 power-series: PowerSeries(X;r) deq: EqDecider(T) uall: [x:A]. B[x] universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] fps-zero: 0 fps-coeff: f[b] fps-one: 1 fps-deriv: df/dx top: Top ifthenelse: if then else fi  bfalse: ff crng: CRng subtype_rel: A ⊆B nat:
Lemmas referenced :  fps-ext fps-deriv_wf fps-one_wf fps-zero_wf bag_null_cons_lemma rng_times_zero int-to-ring_wf bag-count_wf nat_wf bag_wf crng_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality hypothesis productElimination independent_isectElimination lambdaFormation sqequalRule dependent_functionElimination isect_memberEquality voidElimination voidEquality setElimination rename addEquality applyEquality lambdaEquality natural_numberEquality axiomEquality universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[x:X].    (d1/dx  =  0)



Date html generated: 2018_05_21-PM-10_16_18
Last ObjectModification: 2018_05_19-PM-04_17_45

Theory : power!series


Home Index