Nuprl Lemma : bag_null_cons_lemma
∀v,u:Top.  (bag-null(u.v) ~ ff)
Proof
Definitions occuring in Statement : 
bag-null: bag-null(bs)
, 
cons-bag: x.b
, 
bfalse: ff
, 
top: Top
, 
all: ∀x:A. B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
cons-bag: x.b
, 
bag-null: bag-null(bs)
, 
top: Top
Lemmas referenced : 
top_wf, 
null_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}v,u:Top.    (bag-null(u.v)  \msim{}  ff)
Date html generated:
2016_05_15-PM-02_23_58
Last ObjectModification:
2015_12_27-AM-09_53_35
Theory : bags
Home
Index