Step * 1 of Lemma fps-deriv-mul


1. Type
2. valueall-type(X)
3. eq EqDecider(X)
4. CRng
5. PowerSeries(X;r)
6. PowerSeries(X;r)
7. X
⊢ fps-ucont(X;eq;r;f.d(f*g)/dx)
BY
((InstLemma `fps-ucont-composition` [⌜X⌝;⌜eq⌝;⌜r⌝;⌜λ2f.df/dx⌝;⌜λ2f.(f*g)⌝]⋅
   THENM (RepUR ``so_lambda compose so_apply`` -1 THEN Auto)
   )
   THENA Auto
   }

1
.....antecedent..... 
1. Type
2. valueall-type(X)
3. eq EqDecider(X)
4. CRng
5. PowerSeries(X;r)
6. PowerSeries(X;r)
7. X
⊢ fps-ucont(X;eq;r;f.(f*g))


Latex:


Latex:

1.  X  :  Type
2.  valueall-type(X)
3.  eq  :  EqDecider(X)
4.  r  :  CRng
5.  f  :  PowerSeries(X;r)
6.  g  :  PowerSeries(X;r)
7.  x  :  X
\mvdash{}  fps-ucont(X;eq;r;f.d(f*g)/dx)


By


Latex:
((InstLemma  `fps-ucont-composition`  [\mkleeneopen{}X\mkleeneclose{};\mkleeneopen{}eq\mkleeneclose{};\mkleeneopen{}r\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}f.df/dx\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}f.(f*g)\mkleeneclose{}]\mcdot{}
  THENM  (RepUR  ``so\_lambda  compose  so\_apply``  -1  THEN  Auto)
  )
  THENA  Auto
  )




Home Index